УДК 666.97.035:691.32:519.6

РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПРОЦЕССА ТВЕРДЕНИЯ БЕТОНА НА ОСНОВЕ ТРЕХМЕРНОГО УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ

А.М. НИЯКОВСКИЙ (Полоцкий государственный университет)

Представлен анализ научных публикаций, посвящённых вопросам математического моделирования и расчёта кинетики гидратации, формирования температурных полей при твердении бетонов в зависимости от условий термообработки. Предложена основанная на трёхмерном уравнении нестационарной теплопроводности математическая модель, позволяющая рассчитать процесс твердения бетонных изделий сложной геометрической формы. На симметричном тестовом изделии проведена оценка её адекватности.

Ключевые слова: математическое моделирование, кинетика гидратации цемента, температурные поля, трёхмерное уравнение теплопроводности, нестационарная теплопроводность, промышленная теплоэнергетика.

Введение. Для построения рациональной теплоэнергетической системы промышленного предприятия (ТЭСПП), выпускающего бетонные изделия, вопрос о целесообразной технологической потребности в энергии, её виде, объёме и потенциале является основополагающим [1]. В качестве главных элементов ТЭСПП такого производства выступают следующие: узел приготовления бетонной смеси, узлы формовки готовых изделий, установки ускоренной гидратации цемента. В каждом из указанных элементов происходят энергетические превращения, в конечном итоге предопределяющие прочность и внутреннюю структуру изготавливаемых бетонных изделий. Причём можно предполагать функциональную зависимость между осуществлёнными в процессе производства затратами энергии, выходной прочностью изделия и временем его изготовления.

Объём и мощность потребления энергии при производстве бетонных изделий зависят от особенностей протекания экзотермических реакций и распределения температур в бетонном теле при его тепловой обработке с учётом назначенной её продолжительности. Значительная часть исследований, посвящённых данной проблеме, основывается на математическом аппарате, оперирующем эмпирическими или полуэмпирическими уравнениями, содержащими, как правило, трудноопределимые на практике коэффициенты, привязанные к конкретным экспериментальным данным [2–4].

Другая группа исследований связана с использованием уравнения теплопроводности для расчёта процесса твердения бетона, однако большая часть таких работ ограничивается расчётами одномерных или двумерных моделей [5–13]. Оба подхода имеют общий недостаток и не позволяют учесть сложную геометрию форм бетонных изделий, получаемых в реальном производстве, что делает по-прежнему актуальным отыскание решений данной задачи в трёхмерной постановке при переменных во времени теплофизических свойствах материалов. Наибольший прогресс следует ожидать в результат применения численных методов анализа и компьютерного моделирования.

Несмотря на значительные достижения в области трёхмерного моделирования, вопросы расчёта температурных полей и кинетики твердения бетона в изделиях сложных пространственных форм все ещё требуют глубоких исследований, в том числе и с использованием фундаментального уравнения нестационарной теплопроводности, которое в применении к твердеющему бетону имеет вид:

$$\rho c \frac{\partial T}{\partial \tau} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) + q_{\nu}, \tag{1}$$

где λ , ρ , c — соответственно теплопроводность, плотность, удельная массовая теплоёмкость бетона; qv — мощность источников тепловыделения в объёме бетонного тела; T — температура как функция пространственных координат (x, y, z) в пределах расчётной области бетонного тела.

Цель настоящей работы на данном этапе исследования состоит в разработке математической модели на основе нестационарного уравнения теплопроводности для расчёта полей температуры и степени гидратации в бетонном изделии кубической формы, подвергаемом тепловой обработке.

Обзор сложившихся представлений о кинетике гидратации. В основу теоретических представлений о кинетике набора прочности и гидратации цемента положено высказанное McIntosh, Nurse и Saul [14; 15] и обоснованное ими предположение, что прочность тяжёлого бетона определяется степенью его гидратации, причём скорость набора прочности бетоном есть функция времени и температуры. На основании этих представлений был разработан метод оценки тепловыделений (Maturity method), оперирующий понятиями «возраст зрелости бетона», «индекс зрелости», «приведённое» или «эквивалентное

время» твердения. Суть метода состоит в приведении фактической продолжительности ускоренной тепловой обработки бетона при заданной температуре к соответствующей продолжительности его естественной выдержки (при температуре окружающей среды, например, 20 °C), обеспечивающей аналогичную прочность. В различных интерпретациях такой подход в дальнейшем использовался другими исследователями для вычисления теплоты гидратации цемента при различных температурах изотермической выдержки (Е. Раструп, И.Д. Запорожец, А.А. Гвоздев, С.В. Александровский, А.В. Ушеров-Маршак, Н.Б. Марьямов и др.) [2; 3; 5; 6; 16; 17].

В развитие этого метода Р. Freiesleben Hansen, J. Pedersen., T.L. Brown и Н.Е LeMay предложили и обосновали новую функцию для вычисления индекса зрелости бетона, основанную на использовании уравнения Аррениуса для описания влияния температуры на скорость протекания химической реакции гидратации [15; 18; 19].

На основании указанных подходов для расчёта теплоты гидратации в зависимости от температуры и продолжительности тепловой обработки бетона были получены и нашли применение различные аналитические и полуэмпирические зависимости. В частности, С.В. Александровский [5] предложил определять экзотермию цементного клинкера для адиабатического процесса следующим образом:

$$Q(\tau) = Q_{\text{max}} \left[\frac{t_0 (1 - e^{-B \cdot t_{\text{max}} \cdot \tau})}{t_0 + (q_{\text{max}} - t_0) \cdot e^{-B \cdot t_{\text{max}} \cdot \tau}} \right], \tag{2}$$

где Q_{max} – предельно возможное тепловыделение при гидратации, свойственное данному цементу, Дж/кг; t_0 – начальная температура процесса, °C; t_{max} – максимальная температура в конце тепловыделения в адиабатическом процессе, °C; B – параметр скорости адиабатического тепловыделения средний для процесса, зависящий от количества участвующего в реакции гидратации цемента и температуропроводности бетонного тела; τ – продолжительность тепловыделения, ч.

В свою очередь, И.Д. Запорожец [16], А.В. Ушеров-Маршак [2;17] и А.А. Гвоздев [6; 20] предложили следующие зависимости для определения тепловыделений при твердении бетона:

$$Q(\tau) = Q_{\text{max}} \left[(1 + A_{20} \cdot \tau)^{\frac{1}{m+1}} \right]; \tag{3}$$

$$Q(\tau) = Q_{\text{max}} \left[1 - \exp(-K_q \cdot \tau^{n_q}) \right]; \tag{4}$$

$$Q(\tau) = Q_{\text{max}} \left[1 - \exp(\gamma \cdot \tau) \right]. \tag{5}$$

Здесь γ – коэффициент, определяемый физико-химическими свойствами цемента; A_{20} – коэффициент, зависящий от скорости нарастания тепловыделений при заданной температуре твердения 20 °C; m – коэффициент, зависящий от вида и типа цемента; K_q , n_q – безразмерные коэффициенты, полученные опытным путём; остальные входящие величины, те же, что и в формуле (2).

Другой ученый, Н.Б. Марьямов, представил тепловыделения при гидратации цемента в бетонных изделиях как функцию произведения средней температуры на продолжительность тепловой обработки [3]:

$$Q(\tau) = 1.85 Q_{\text{max}} (B/\text{LJ})^{0.44} (1 - a \cdot e^{\bar{t} \cdot \tau});$$
 (6)

или при $0 < \overline{t} \cdot \tau < 300$

$$Q(\tau) = 0.0023 Q_{\text{max}} (B/\coprod)^{0.44} \overline{t} \cdot \tau,$$
 (6')

где B/U – водоцементное отношение, принятое при затворении бетона; \overline{t} – температура тепловой выдержки, °C; остальные величины те же, что и в предыдущих формулах.

Для решения рассматриваемой задачи G. De Schutter и L. Taerwe [21] предложили следующую совокупность уравнений:

$$Q(\tau, r_{u}) = Q_{\text{max}} \cdot f(r_{u}) \cdot q(t_{\tau});$$

$$q(t_{\tau}) = \exp\left[-\frac{E_{a}}{R} \cdot \left(\frac{1}{t + 273} - \frac{1}{293}\right)\right];$$

$$f(r_{u}) = c \left[\sin(\pi \cdot r_{u})\right]^{a} \cdot \exp(-br_{u}).$$
(7)

Здесь $r_{\text{ц}}$ – степень гидратации цемента; $q(t_{\text{t}})$ – функция, приводящая фактическую продолжительность тепловыделений при фактической температуре твердения к продолжительности естественного твердения

при температуре окружающей среды, обеспечивающей такую же прочность; a, b, c — параметры гидратации (для портландцементов: a = 0,667; b = 3,0; c = 2,5968); t — температура бетона, °C; E_a — энергия активации, Дж/моль; R — универсальная газовая постоянная, Дж/(моль·К).

Очевидно, что функция $q(t_{\tau})$ из совокупности уравнений (7) является масштабом времени и имеет то же содержание, что и произведение $(\overline{t} \cdot \tau)$ в уравнении (6).

В уравнениях (3)–(6), (6') время τ не совпадает с физическим временем, а является функцией температуры бетона: чем выше эта температура, тем большую прочность наберёт бетон за меньшее фактическое время и тем большей будет величина τ . Иными словами, если температура выдержки бетона отличается от температуры естественных условий твердения, например, 20 °C, то в уравнениях (3)–(6), (6') должно фигурировать не физическое, а некоторое условное, «приведённое» время, соответствующее возрасту бетона аналогичной прочности, набранной им без тепловой обработки. В общем виде приведённое время может быть выражено следующим образом [6; 20]:

$$\tau_{\text{прив}} = \int_{\tau_0}^{\tau} F_Q \left[t(\tau) \right] d\tau, \tag{8}$$

где $F_Q[t(\tau)]$ — функция температуры; τ_0 — время, соответствующее началу воздействия температуры, отличной от 20 °C; τ — текущее (физическое) время; для определения функции $F_Q[t(\tau)]$ в [6 и 20] даны соответствующие эмпирические зависимости.

Сравнение результатов, получаемых с помощью уравнений (2)–(7), выполненное в работах [15; 21; 22] путём экспериментальной проверки и детальных расчётов, показывает, что комплекс уравнений (7) даёт более точные результаты в широком диапазоне времени и температур. Вместе с тем путём разбиения переменной времени на отдельные диапазоны и подбором соответствующих им коэффициентов в уравнениях (3)–(6) можно также добиться удовлетворительной сходимости с экспериментальными данными. При этом следует отметить, что во всех этих уравнениях используются величины, которые могут быть получены только экспериментальным путём. Поэтому возможность их применения и точность полученных с их помощью результатов целиком зависят от доступности и качества необходимых экспериментальных данных.

Сведения о кинетике гидратации особенно важны при математическом моделировании и расчёте температурных полей в твердеющем бетоне в режиме реального времени, поскольку температура в данной точке бетонного тела должна определяться с учётом имеющихся в её окрестности тепловыделений, в свою очередь, являющихся функцией этой температуры.

Математическая модель. Развиваемая в настоящей работе математическая модель основывается на уравнении теплопроводности и позволяет рассчитать эволюцию распределения температуры $T(x, y, z, \tau)$ и коэффициента гидратации $H(x, y, z, \tau)$ в условиях заданного закона тепловой обработки изделия из бетонной смеси. Расчёт изменения температуры в различных точках трёхмерного пространства твердеющего бетона (рисунок 1, a, область Ω_1) производился по уравнению:

деющего оетона (рисунок 1,
$$a$$
, ооласть Ω_1) производился по уравнению:

$$\frac{\partial T(x, y, z, \tau)}{\partial \tau} = \frac{1}{c_6 \rho_6} \left[W_c P_q(Q(x, y, z, \tau), T(x, y, z, \tau)) + \frac{\partial \left(\lambda(H(x, y, z, \tau), T(x, y, z, \tau)) \frac{\partial T(x, y, z, \tau)}{\partial x}\right) + \frac{\partial \left(\lambda(H(x, y, z, \tau), T(x, y, z, \tau)) \frac{\partial T(x, y, z, \tau)}{\partial x}\right) + \frac{\partial \left(\lambda(H(x, y, z, \tau), T(x, y, z, \tau)) \frac{\partial T(x, y, z, \tau)}{\partial x}\right)}{\partial z} + \frac{\partial \left(\lambda(H(x, y, z, \tau), T(x, y, z, \tau)) \frac{\partial T(x, y, z, \tau)}{\partial x}\right)}{\partial z} \right].$$
(9)

Здесь τ – время, c; (x, y, z) – декартовы координаты (ось Y направлена вертикально); $T(x, y, z, \tau)$ – температура бетона в точке с координатами (x, y, z) в момент времени τ , °C; ρ_{δ} – плотность бетона, $\kappa \Gamma / M^3$; W_c – удельный расход цемента в бетоне $(\kappa \Gamma / M^3)$; c_{δ} – удельная теплоёмкость бетона, $\mathcal{L} \# / (\kappa \Gamma \cdot {}^{\circ} C)$; $Q(x, y, z, \tau)$ – удельная теплота, выделившаяся при гидратации цемента в точке с координатами (x, y, z) к моменту времени τ , $\mathcal{L} \# / \kappa \Gamma$; $H(x, y, z, \tau)$ – степень гидратации цемента в точке с координатами (x, y, z), достигнутая κ моменту времени τ , вычисляемая как отношение количества выделившейся теплоты гидратации в указанной точке на данный момент времени κ предельно возможному тепловыделению, свой-

ственному данному цементу: $H(x, y, z, \tau = Q(x, y, z, \tau)/Q_{max}; \lambda(H,T)$ – теплопроводность бетона, зависящая от его состава, степени гидратации и температуры, Br/m^2 ; $P_q(Q,T)$ – удельная мощность тепловыделения при гидратации цемента, Br/kr.

Поступление теплоты гидратации в зависимости от температуры и времени определялось по данным [9]. При выполнении численных расчётов удельная мощность тепловыделений рассматривалась как отношение величины приращения тепловыделений к промежутку времени, в течение которого данное приращение произошло:

$$P_{q}(Q,T) = \frac{dQ(T, \tau_{\text{прив}}(Q,T))}{d\tau} \approx \frac{Q(T, \tau_{\text{прив}}(Q,T) +)\Delta\tau) - Q(T, \tau_{\text{прив}}(Q,T))}{\Delta\tau}, \tag{10}$$

где Q — удельная теплота, выделившаяся при гидратации цемента к рассматриваемому моменту времени; $(T, \tau_{\text{прив}}(Q, T))$ — функция тепловыделения цемента; $\tau_{\text{прив}}(Q, T)$ — приведённое время гидратации цемента; $\Delta \tau$ — шаг изменения времени тепловой обработки, с.

Параллельно с распределением температур в пространстве бетонного изделия производился расчёт распределения тепловыделения и, соответственно, степени гидратации цемента в бетоне согласно следующему уравнению:

$$\frac{\partial Q(x, y, z, \tau)}{\partial \tau} = Q_{\text{max}} \frac{\partial H(x, y, z, \tau)}{\partial \tau} = P_q(Q(x, y, z, \tau), T(Q(x, y, z, \tau))). \tag{11}$$

Расчёт изменения температуры в различных точках трехмерного пространства стальной опалубки и конструктивных элементов оборудования (рисунок 1, a, область Ω_2) производился согласно уравнению теплопроводности:

$$\frac{\partial T(x, y, z, \tau)}{\partial \tau} = \frac{\lambda_{cr}}{c_{cr} \rho_{cr}} \left[\frac{\partial^2 T(x, y, z, \tau)}{\partial x^2} + \frac{\partial^2 T(x, y, z, \tau)}{\partial y^2} + \frac{\partial^2 T(x, y, z, \tau)}{\partial z^2} \right], \tag{12}$$

где $c_{\rm cr}$ – удельная теплоёмкость стали (475 Дж/кг); $\rho_{\rm cr}$ – плотность стали (7850 кг/м³); $\lambda_{\rm cr}$ – теплопроводность стали (44,5 Вт/(м·К)); остальные обозначения те же, что и в приведённых выше формулах.

Граничные условия для температуры $T_0(\tau_0)$ на границе области Ω_2 и Ω_3 системы «бетон – опалубка – среда тепловой обработки» приведены в таблице 1 и задавались интервальной функцией в виде трёх участков, характеризующих нагрев, изотермическую выдержку и охлаждение.

Предлагаемая модель разработана для бетонных изделий произвольных геометрических форм. Однако на первом этапе исследования с целью сравнения получаемых на её основе результатов с доступными опубликованными ранее экспериментальными данными в качестве объекта исследования выбран куб с размерами $0.3\times0.3\times0.3$ м (рисунок $1, \delta$). На границах куба симметрично по его граням были заданы граничные условия третьего рода с учётом функции T_0 (τ). Теплофизические свойства бетонной смеси определялись на основе закона аддитивности.

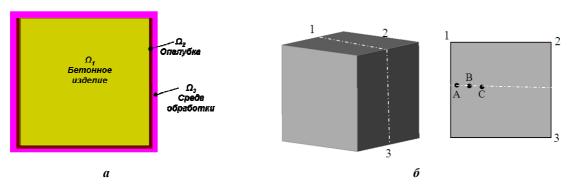


Рисунок 1. — Схематичное изображение объекта «куб» размером $0.3\times0.3\times0.3\times0.3$ м и выделенной плоскости Y с точками A, B, C

Для расчёта температурного поля по уравнению (10) использовалась явная конечно-разностная схема, реализованная с помощью математического ядра и специального программного модуля для вычисления температур [23]. Число расчётных сеточных элементов трёхмерной модели составило 238328 при среднем размере расчётного сеточного элемента 0,005 м.

Результаты расчёта. На рисунке 2 представлены фрагменты визуализации распределения температур и коэффициентов гидратации на момент времени $\tau = 46800$ с для центральной плоскости (Y=0,15) куба, подвергнутого тепловой обработке. Расчёты показали неоднородный характер как температурного поля, так и поля гидратации, что видно из рисунка 2.

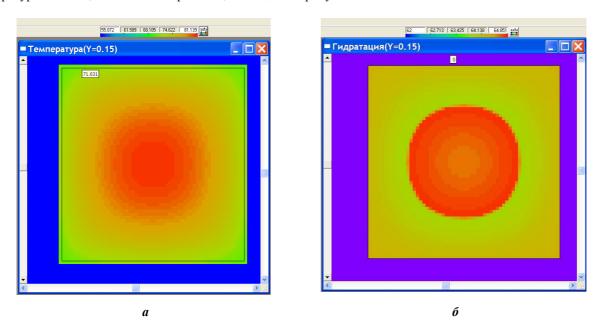


Рисунок 2. — Изображение расчётного распределения температур (a) и коэффициента гидратации (δ) среднего сечения «куба» с размерами $0,3 \times 0,3 \times 0,3$ м на момент времени 46800 с

В таблице 1 представлены результаты моделирования температур и коэффициентов гидратации в выделенных точках A (0,15;0,15;0,0025), B (0,15;0,15;0,075), C (0,15;0,15;0,15) среднего сечения куба, подвергнутого тепловой обработке. Следует отметить, что таких сечений в кубе три в силу симметрии задачи.

Таблица 1 — Расчётные значения коэффициента гидратации (H) и температуры (T) в выделенных точках: А (0,15; 0,025), В (0,15; 0,075), С (0,15; 0,15; 0,15) среднего сечения куба размером 0,3×0,3×0,3 м

Drove a	T₀, °C	Н, %	Н, %	Н, %	T, °C	T, °C	T, °C
Время, т, с	(граница)	(точка А)	(точка В)	(точка С)	(точка А)	(точка В),	(точка С)
1	2	3	4	5	6	7	8
0	20	0,0005	0,0005	0,0005	20	20	20
1200	25,42	1,22	1,22	1,22	21,24	20,81	20,79
2400	30,84	2,53	2,48	2,48	23,24	21,98	21,78
3600	36,26	3,97	3,82	3,80	25,84	23,71	23,28
4800	41,68	5,55	5,27	5,22	28,94	26,04	25,39
6000	47,1	7,31	6,86	6,77	32,48	28,92	28,06
7200	52,52	9,27	8,62	8,48	36,39	32,29	31,26
8400	57,94	11,45	10,56	10,36	40,65	36,09	34,92
9600	63,36	13,85	12,72	12,46	45,18	40,26	38,98
10800	68,78	16,48	15,10	14,77	49,97	44,76	43,39
12000	74,2	19,36	17,72	17,31	54,96	49,55	48,10
13200	79,62	22,48	20,58	20,10	60,14	54,57	53,08
14400	85	25,85	23,68	23,13	65,49	59,80	58,27
15600	85	29,43	27,03	26,41	70,26	65,14	63,63
16800	85	33,24	30,08	29,66	74,26	69,96	68,62
18000	85	35,47	33,69	32,98	77,13	74,38	73,58
19200	85	37,56	35,83	35,34	79,35	77,20	76,52
20400	85	39,59	37,91	37,44	81,19	79,65	79,12
21600	85	41,59	39,94	39,47	82,72	81,75	81,37

Окончание таблицы 1

1	2	3	4	5	6	7	8
22800	85	43,55	41,92	41,46	84,01	83,53	83,29
24000	85	45,49	43,86	43,41	85,09	85,03	84,92
25200	85	47,40	45,77	45,32	85,99	86,30	86,30
26400	85	49,29	47,65	47,19	86,75	87,37	87,46
27600	85	51,16	49,50	49,05	87,38	88,28	88,45
28800	85	53,03	51,34	50,88	87,92	89,05	89,29
30000	85	54,87	53,16	52,69	88,37	89,70	90,00
31200	85	56,06	54,96	54,49	88,53	90,23	90,60
32400	85	56,78	56,75	56,27	88,42	90,30	90,94
33600	85	57,50	57,81	57,61	88,31	89,96	90,54
34800	85	58,20	58,53	58,33	88,19	89,65	90,09
36000	85	58,90	59,25	59,05	88,07	89,44	89,83
37200	81,26	59,59	59,96	59,76	87,46	89,24	89,63
38400	77,53	60,29	60,68	60,48	86,31	88,87	89,38
39600	73,79	60,99	61,39	61,20	84,75	88,16	88,87
40800	70,06	61,67	62,09	61,91	82,86	87,07	88,00
42000	66,32	62,34	62,78	62,61	80,70	85,61	86,76
43200	62,58	63,00	63,47	63,29	78,30	83,84	85,17
44400	58,83	63,64	64,15	63,97	75,69	81,79	83,28
45600	55,07	64,27	64,80	64,65	72,92	79,47	81,12
46800	51,32	64,84	65,30	65,24	69,97	76,91	78,65
48000	47,57	65,31	65,80	65,74	66,86	74,14	76,00
49200	43,81	65,77	66,26	66,22	63,65	71,21	73,16
50400	40,06	66,20	66,73	66,69	60,36	68,15	70,17
51600	36,3	66,63	67,19	67,15	57,00	64,99	67,07
52800	32,55	67,03	67,63	67,61	53,57	61,73	63,87
54000	28,8	67,43	68,06	68,04	50,09	58,39	60,58
55200	25,04	67,74	68,48	68,47	46,54	54,98	57,21
56400	21,29	67,99	68,88	68,88	42,94	51,49	53,77
57600	20	68,24	69,20	69,28	39,56	47,91	50,22
58800	20	68,49	69,45	69,55	36,80	44,41	46,61

Анализ полученных расчётным путём значений показал, что изменение температуры во времени в точке A (0,15; 0,15; 0,0025) имеет два участка. На первом участке температура увеличивается от начального значения 20 °C до значения 88,53 °C при времени тепловой обработки $\tau = 31200$ с, а далее начинает уменьшаться до температуры 36,80°C. Причём в интервале времени тепловой обработки 22880...38400 с температура в точке A (0,15; 0,15; 0,0025) изменяется в пределах одного градуса и имеет тенденцию к образованию изотермической площадки. Установленная закономерность удовлетворительно согласуется с характером изменения температуры T_0 (τ) на границе системы «бетон – опалубка». Причём температура в сеточном элементе A (0,15; 0,15; 0,0025) смещена вправо по отношению к температурной кривой T_0 (τ) на границе системы «бетон в опалубке – тепловая среда». Этот сдвиг объясняется разными законами изменения температуры в сеточных элементах по пространству куба вследствие нестационарности процесса нагрева и охлаждения. Подобный характер изменения температуры от времени в точках В (0,15; 0,15; 0,075) и С (0,15; 0,15; 0,15) куба сопровождается максимизацией температуры, а именно достижением температур 90,30 °C и 90,94 °C при времени тепловой обработки $\tau = 32400$ с, что видно из данных таблицы 1.

Коэффициент гидратации (H), рассчитанный по температурному полю, увеличивается по мере течения времени моделирования, о чем свидетельствуют данные таблицы 1 для всех выделенных точек: A (0,15; 0,025); B (0,15; 0,075); C (0,15; 0,15; 0,15).

На втором этапе проведена математическая обработка экспериментальных данных, приведённых в работе [4], полученных для двух выделенных точек куба размером $0.3 \times 0.3 \times 0.3$ м, которые в таблице 2 условно обозначены E и F и находятся на разных расстояниях от поверхности куба в его центральном сечении.

Как видно из таблицы 2, максимизация температуры для точки E наблюдается при температуре 82 °C в интервале времени тепловой обработки $\tau = 21600...23400$ с. Следует отметить, что кривая нагрева температуры выделенного элемента сдвинута относительно кривой температуры на границе раздела системы «бетон в опалубке – среда тепловой обработки». Аналогичная закономерность наблюдается

для точки F, находящейся на вдвое большем расстоянии от поверхности куба, с той лишь разницей, что максимизация температуры на уровне 82 °C проходит в другом интервале, сдвинутом вправо по времени тепловой обработки $\tau = 25200...27000$ с.

Несмотря на различия в функциях тепловой обработки, используемых в [4] и настоящей работе, следует отметить удовлетворительное согласование экспериментальных и расчётных данных, показывающее адекватность предлагаемого метода расчёта процесса твердения бетонного изделия в трёхмерной постановке.

Таблица 2. — Экспериментальные значения температур в точках E и F средней плоскости куба $0.3 \times 0.3 \times 0.3 \times 0.3$ м,									,
соответственно в 7 и 15 см от поверхности									
		$T \circ C$	$T \circ C$	$T \circ C$		$T \circ C$	T °C	$T \circ C$	

Время, с	T₀, °C	T, °C	T, °C	Время, с	T ₀ , °C	T, °C	T, °C
ърсми, с	(граница)	(точка E)	(точка F)	ъремя, с	(граница)	(точка E)	(точка F)
0	15	15	15	28800	80	81	81,5
1800	29	16	16	30600	75	80,5	81
3600	40	18,5	17,5	32400	71	79	81
5400	45	21,5	20,5	34200	67	75	80,5
7200	49	26	24,5	36000	62	70,5	79,5
9000	62	33	30	37800	59,5	66,5	75,5
10800	80	52	41,5	39600	56	62	70,5
12600	80	67,5	59,5	41400	52	58	65,5
14400	80	77	71	43200	49,5	54,5	61
16200	80	80,5	78	45000	47	50,5	56
18000	80	81	79,5	46800	44	46,5	51,5
19800	80	81,5	80,5	48600	40	42,5	47
21600	80	82	81	50400	36	38,5	42
23400	80	82	81,5	52200	33	34,5	37
25200	80	81,5	82	54000	30	30,5	31,5
27000	80	81	82				

Заключение. На основе нестационарного уравнения теплопроводности в трёхмерной постановке, дополненного уравнениями, учитывающими теплоту гидратации, npednoжeha математическая модель твердения тяжёлого бетона в условиях заданного температурного режима тепловой обработки на границе раздела системы «бетонное изделие в опалубке – тепловая среда». В качестве тестового объекта выбран бетонный куб с размерами $0.3\times0.3\times0.3\times0.3$ м. На тестовом объекте системы сеточным методом выполнены численные расчёты распределения температур, коэффициента гидратации по объёму изделия в зависимости от времени тепловой обработки; nonyveho удовлетворительное согласование расчётных данных с экспериментальными данными по температурам, взятыми из работы [4].

ЛИТЕРАТУРА

- 1. Нияковский, А.М. Формирование рациональной теплоэнергетической системы предприятий железобетонных изделий при их модернизации / А.М. Нияковский // Вестник Полоцкого государственного университета. Серия F, Строительство. Прикладные науки. 2012. № 8. С. 93–98.
- 2. Ушеров-Маршак, А.В. Информационная технология бетона ускоренного твердения / А.В. Ушеров-Маршак, А.Г. Синякин // Бетон и железобетон. 1994. № 6. С. 2–4.
- 3. Марьямов, Н.Б. Тепловая обработка изделий на заводах сборного железобетона (процессы и установки) / Н.Б. Марьямов. М.: Стройиздат, 1970. 272 с.
- 4. Миронов, С.А. Ускорение твердения бетона / С.А. Миронов, Л.А. Малинина. М. : Стройиздат, 1964. 348 с.
- 5. Александровский, С.В. Расчёт бетонных и железобетонных конструкций на изменения температуры и влажности с учётом ползучести бетона / С.В. Александровский. М.: НИИЖБ, 2004. 712 с.
- 6. Васильев, П.И. Железобетонные конструкции гидротехнических сооружений / П.И. Васильев, Ю.И. Кононов, Я.Н. Чирков. Киев : Вища школа, 1982. 320 с.
- 7. Дмитрович, А.Д. Тепло- и массообмен при твердении бетона в паровой среде / А.Д. Дмитрович. М.: Стройиздат, 1967. 243 с.
- 8. Modelling of heat of hydration for thick concrete constructions a note / Bennet Kuriakose [et al.] // Journal of Structural Engineering. 2015. Vol. 42, No. 4, October November. P. 348–357.

- 9. Аксенчик, К.В. Совершенствование тепловой работы пропарочных камер для тепловлажностной обработки железобетонных изделий : автореф. дис. ... канд. техн. наук : 05.14.04 / К.В. Аксенчик. Иваново, 2014. 20 с.
- 10. Подгорнов, Н.И. Математическая формулировка задачи определения температуры бетона при термообработке в гелиокамерах типа «горячего ящика» / Н.И. Подгорнов, Д.Д. Коротеев // Вестник РУДН. 2014. С. 131–135. (Серия «Инженерные исследования», № 1).
- 11. Василевский, К.К. Приближенное решение нелинейной нестационарной задачи тепло- и массообмена для полуограниченного пористого тела / К.К. Василевский // Теплофизика высоких температур. 1964. Т. 2, вып. 2. С. 260—266.
- 12. Многочисленные решения в задачах управления нагревом твёрдых тел / И.Б. Сороговец [и др.] // Инженерно-физический журнал. 2000. Т. 73, № 5.
- 13. Дербасова, Е.М. Технология непрерывного изготовления железобетонных корпусов морских ледостойких платформ в условиях Каспийского моря на основе моделирования тепловых режимов отливки : автореф. дис. ... канд. техн. наук : 05.08.04 / Е.М. Дербасова ; Астрахан. гос. техн. ун-т. Астрахань, 2015. 20 с.
- 14. Evaluation of the Maturity Method to Estimate Concrete Strength in Field Applications: Research Report [Electronic resource] / J.M. Nixon [et al.] // Highway Research Center and Department of Civil Engineering at Auburn University. 2008. Mode of access: http://www.eng.auburn.edu/files/centers/hrc/930-590-2.pdf. Date of access: 14.12.2018.
- 15. Carino, N. The Maturity Method: From Theory to Application [Electronic resource] / N. Carino, H. Lew // In Structures; Chang, P., ed.: American Society of Civil Engineers: Reston, VA, 1-19. 2001. Mode of access: http://www.learncivilengineering.com/wp-content/uploads/2015/02/THE-MATURITY-METHOD-FROM-THEORY-TO-APPLICATION-1.pdf. Date of access: 14.12.2018.
- 16. Запорожец, И.Д. Тепловыделение бетона / И.Д. Запорожец, С.Д. Окороков, А.А. Парийский. Л. : Стройиздат, 1967. 317 с.
- 17. Ушеров-Маршак, А.В. Калориметрия цемента и бетона : Избр. тр. / А.В. Ушеров-Маршак. Харьков : Φ акт, 2002. 180 с.
- 18. Freiesleben Hansen, P., Pedersen, J. Curing of Concrete Structures / P. Freiesleben Hansen, J. Pedersen. CEB Information Bulletin 166. 1985, May 42 p.
- 19. Freiesleben Hansen, P., Pedersen J. Maturity Computer for Controlled Curing and Hardening of Concrete / P. Freiesleben Hansen, J. Pedersen // Nordisk Betong. − 1977. − № 1. − P. 19–34.
- 20. Температурные напряжения в массивных бетонных и железобетонных элементах энергетических сооружений / П.И. Васильев [и др.]. СПб. : СПбГТУ, 1995. 215 с.
- 21. De Schutter, G. General hydration model for Portland cement and blast furnace slag cement / G. De Schutter, L. Taerwe // Cement and Concrete Research. 1995. № 25 (3). P. 593–604.
- 22. Zákoutsky, J. Effect of temperature on the early-stage hydration characteristics of Portland cement: A large-volume calorimetric study / J. Zákoutsky, V. Tydlitát, R. Cherny // Construction and Building Materials. − 2012. − № 36. − P. 969–976.
- 23. Чичко, А.Н. Компьютерные системы моделирования физических процессов / А.Н. Чичко // Вестн. Белорус. нац. техн. ун-та. 2003. № 2. С. 42–48.

Поступила 18.12 2018

DEVELOPMENT OF A CONCRETE HARDENING PROCESS MATHEMATICAL MODEL BASED ON A THREE-DIMENSIONAL HEAT EQUATION

A. NIYAKOVSKI

The analysis of scientific publications devoted to mathematical modelling and calculation of hydration kinetics, formation of temperature fields during concrete hardening depending on heat treatment conditions is presented. A mathematical model based on a three-dimensional equation of non-stationary thermal conductivity is proposed, which allows to calculate the process of hardening of concrete products of complex geometric shape. The adequacy of the developed model was assessed on a symmetrical test product.

Keywords: mathematical modeling, cement hydration kinetics, temperature fields, three-dimensional heat equation, non-stationary thermal conductivity, industrial heat engineering.