НИЗКОТЕМПЕРАТУРНАЯ ТЕПЛОВЛАЖНОСТНАЯ ОБРАБОТКА ТЯЖЕЛОГО БЕТОНА С КОМПЛЕКСНЫМИ ДОБАВКАМИ НА ОСНОВЕ ПОЛИКАРБОКСИЛАТНЫХ СУПЕРПЛАСТИФИКАТОРОВ

##plugins.themes.bootstrap3.article.main##

Л. М. ПАРФЕНОВА
В. В. МАРКОВЦОВА
С. Ж. РАЗЗАКОВ

Аннотация

В статье приводятся параметры низкотемпературных режимов ТВО бетонов с комплексными добавками, включающими поликарбоксилатный суперпластификатор и воздухововлекающую добавку. Установлено, что применение в составе бетона поликарбоксилатного суперпластификатора и воздухововлекающей добавки делает возможным снижение длительности изотермического прогрева с 5 часов до 3 часов и температуры изотермического прогрева с 60 °C до 40 °C, при этом обеспечивая высокую интенсивность твердения и набор прочности через 7 суток 80–84% от проектной, а в возрасте 28 суток на 15–20% выше прочности бездобавочного бетона, твердевшего в воздушно-сухих условиях. Комплексная добавка, включающая Хидетал ГП-9-Альфа и Хидетал П8, более эффективна при низкотемпературной ТВО по сравнению с комплексной добавкой Стахемент 2000М и Микропоран. Показано, что поликарбоксилатные суперпластификаторы делают возможным применение сокращенных и низкотемпературных режимов ТВО, что позволит снизить энергозатраты и риск появления структурных дефектов.

##plugins.themes.bootstrap3.article.details##

Как цитировать
ПАРФЕНОВА, Л. М., МАРКОВЦОВА, В. В., & РАЗЗАКОВ, С. Ж. (2025). НИЗКОТЕМПЕРАТУРНАЯ ТЕПЛОВЛАЖНОСТНАЯ ОБРАБОТКА ТЯЖЕЛОГО БЕТОНА С КОМПЛЕКСНЫМИ ДОБАВКАМИ НА ОСНОВЕ ПОЛИКАРБОКСИЛАТНЫХ СУПЕРПЛАСТИФИКАТОРОВ. Вестник Полоцкого государственного университета. Серия F. Строительство. Прикладные науки, (4), 2-12. https://doi.org/10.52928/2070-1683-2025-43-4-2-12
Биографии авторов

Л. М. ПАРФЕНОВА, Полоцкий государственный университет имени Евфросинии Полоцкой

канд. техн. наук, доц.

С. Ж. РАЗЗАКОВ, Наманганский государственный технический университет

д-р техн. наук, проф.

Библиографические ссылки

Bazhenov, Y. M. (2022). Tekhnologiya betona [Concrete technology] (6th ed., rev. and enl.). Moscow: ASV. https://e.lanbook.com/book/231595 (In Russ.).

Mironov, S. A. (Eds.). (1973). Rost prochnosti betona pri proparivanii i posleduyushchem tverdenii [Strength gain of concrete during steam curing and subsequent hardening]. Moscow: Stroyizdat. (In Russ.).

Malinina, L. A. (1977). Teplovlazhnostnaya obrabotka tyazhelogo betona [Steam curing of heavyweight concrete]. Moscow: Stroyizdat. (In Russ.).

Bleshchik, N. P. (2006). Proektirovanie sostava betona i rezhima teplovoy obrabotki zhelezobetonnykh konstruktsiy [Design of concrete mix and thermal curing regime for reinforced concrete structures]. Stroitel'naya nauka i tekhnika [Construction Science and Technology], (3), 37–42. (In Russ.).

Bibik, M. S., & Babitskiy, V. V. (2012). Raschetno-eksperimental'naya metodika optimizatsii rezhima teplovlazhnostnoy obrabotki betona [Computational-experimental method for optimizing the steam curing regime of concrete]. Stroitel'naya nauka i tekhnika [Construction Science and Technology], (1), 31–35. (In Russ.).

Usherov-Marshak, A. V., Babayevskaya, T. V., & Tsik, M. (2002). Metodologicheskie aspekty sovremennoy tekhnologii betona [Methodological aspects of modern concrete technology]. Beton i zhelezobeton [Concrete and Reinforced Concrete], (1), 5–7. (In Russ.).

Gnyrya, A. I., Abzaev, Y. A., Korobkov, S. V., & Gauss, K. S. (2018). Vliyanie vremeni i temperatury tverdeniya na strukturoobrazovanie tsementnogo kamnya [Influence of curing time and temperature on the structure formation of cement paste]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta [Bulletin of Tomsk State University of Architecture and Building], 20(2), 171–185. (In Russ.).

Pang, X., Sun, L., Chen, M., Xian, M., Cheng, G., Liu, Y., & Qin, J. (2022). Influence of curing temperature on the hydration and strength development of Class G Portland cement. Cement and Concrete Research, (156), Article 106776. DOI: 10.1016/j.cemconres.2022.106776.

Zeyad, A. M., Tayeh, B. A., Adesina, A., Azevedo, A. R. G., Amin, M., Hadzima-Nyarko, M., & Agwa, I. S. (2022). Review on effect of steam curing on behavior of concrete. Cleaner Materials, (3), Article 100042. DOI: 10.1016/j.clema.2022.100042.

Zhou, Y., Zhan, Y., Zhu, M., Wang, S., Liu, J., & Ning, N. (2022). A review of the effects of raw material compositions and steam curing regimes on the performance and microstructure of precast concrete. Materials, 15(8), Article 2859. DOI: 10.3390/ma15082859.

Suleymanova, L. A., Pogorelova, I. A., Slepukhin, A. S., & Plekhova, S. I. (2016). Vysokotekhnologichnye betony s ispol'zovaniyem superplastifitsiruyushchikh dobavok na osnove polikarboksilata [High-performance concretes using polycarboxylate-based superplasticizers]. Vestnik BGTU im. V. G. Shukhova [Bulletin of BSTU named after V. G. Shukhov], (9), 63–66. (In Russ.).

Yukhnevskiy, P. I. (2013). Vliyanie khimicheskoy prirody dobavok na svoystva betonov [Influence of the chemical nature of admixtures on concrete properties]. Minsk: Belarusian National Technical University. (In Russ.).

Khalikov, R. M., Ivanova, O. V., Korotkova, L. N., & Sinitsyn, D. A. (2020). Supramolekulyarnyy mekhanizm vliyaniya polikarboksilatnykh superplastifikatorov na upravlyaemoye tverdeniye stroitel'nykh nanokompozitov [Supramolecular mechanism of polycarboxylate superplasticizers’ influence on controlled hardening of construction nanocomposites]. Nanotekhnologii v stroitel'stve [Nanotechnologies in Construction], 12(5), 250–255. DOI: 10.15828/2075-8545-2020-12-5-250-255.

Shmit'ko, E. I., Bel'kova, N. A., & Makushina, Y. V. (2021). K voprosam vzaimosvyazi struktury dobavok-plastifikatorov s velichinoy vlazhnostnoy usadki tsementnykh sistem [On the relationship between the structure of plasticizer admixtures and moisture shrinkage of cement systems]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel'stvo [Proceedings of Higher Educational Institutions. Construction], 11(755), 134–144. (In Russ.).

Koryanova, Y., & Nesvetaev, G. (2017). About influence of some superplasticizers on hydration and the structure of hardened cement paste. MATEC Web of Conferences, (129), Article 05017. DOI: 10.1051/matecconf/201712905017.

Kastornykh, L. I., Kaklyugin, A. V., & Gikalo, M. A. (2023). Vliyanie superplastifikatorov na osnove polikarboksilatov na effektivnost' termoobrabotki monolitnogo betona [Influence of polycarboxylate-based superplasticizers on the efficiency of thermal treatment of cast-in-place concrete]. Stroitel'nye materialy [Construction Materials], (4), 35–41. DOI: 10.31659/0585-430X-2023-812-4-35-41. (In Russ., abstr. in Engl.).

Dobshits, L. M., Anisimov, S. N., Smirnov, A. O., Leshkanov, A. Y., & Anisimova, A. A. (2020). Prochnost' zhestkikh betonnykh smesey s polikarboksilatnymi plastifikatorami [Strength of stiff concrete mixes with polycarboxylate plasticizers]. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Seriya: Materialy. Konstruktsii. Tekhnologii [Bulletin of the Volga State University of Technology. Series: Materials. Structures. Technologies], (4), 6–13. DOI: 10.25686/2542-114X.2020.1.6. (In Russ.).

Tarakanov, O. V. (2016). Khimicheskie dobavki v rastvory i betony [Chemical admixtures in mortars and concretes]. Penza: PGUAS. (In Russ.).

Izotov, V. S., & Sokolova, Y. A. (2006). Khimicheskie dobavki dlya modifikatsii betona [Chemical admixtures for concrete modification]. Moscow: Paleotip. (In Russ.).

Smirnova, O. M. (2021). Low-heat steaming treatment of concrete with polycarboxylate superplasticizers. Magazine of Civil Engineering, 102(2), Article 10213. DOI: 10.34910/MCE.102.13.

Zelenkovskaya, Z. L., & Kovshar, S. N. (2023). Naznacheniye i obosnovaniye traditsionnykh rezhimov teplovoy obrabotki betonnykh i zhelezobetonnykh izdeliy [Design and justification of conventional thermal curing regimes for concrete and reinforced concrete products]. Nauka i tekhnika [Science and Technology], 22(2), 150–157. DOI: 10.21122/2227-1031-2023-22-2-150-157. (In Russ., abstr. in Engl.).

Рекомендуемые статьи автора (авторов)

<< < 1 2