УДК 621.771.23

DOI 10.52928/2070-1616-2024-50-2-14-18

ПАРАМЕТРЫ МГНОВЕННОГО ОЧАГА ДЕФОРМАЦИИ ПРИ ОБРАТНОМ РАБОЧЕМ ХОДЕ КЛЕТИ СТАНОВ ХОЛОДНОЙ ПИЛЬГЕРНОЙ ПРОКАТКИ ТРУБ

канд. техн. наук, доц. С.В. ПИЛИПЕНКО (Полоцкий государственный университет имени Евфросинии Полоцкой)

Приведены результаты исследований, касающиеся развития теоретических основ определения величины обжатия трубы по толщине стенки в мгновенном очаге деформации при обратном рабочем ходе клети стана холодной пильгерной прокатки труб. Выведены упрощенные зависимости для расчета параметров обжатия при обратном рабочем ходе клети. В предложенных зависимостях не учитываются упругие деформации клети, с чем будет связано дальнейшее развитие метода расчета деформационных параметров рассматриваемого случая ведения процесса холодной пильгерной прокатки.

Ключевые слова: холодная прокатка, пильгерная прокатка, трубы, обжатие, толщина стенки, вытяжка.

Введение. Производительность станов холодной пильгерной прокатки труб и точность готовых труб, прокатываемых в стане, – в большинстве случаев противоположные понятия. С ростом линейного сдвига трубы за двойной ход точность труб, как правило, ухудшается [1–3]. В то же время с уменьшением величины подачи, например, – условие для получения более точных труб, – уменьшается линейный сдвиг трубы за двойной ход клети, снижается производительность стана. Один из способов повышения его производительности без ухудшения качества труб – применение поворота и подачи трубы в обоих положениях клети. Таким образом, деформационные возможности процесса холодной пильгерной прокатки можно использовать более эффективно [4]. Однако пильгерный процесс в таких условиях деформации до конца не изучен. В частности, в достаточной мере не исследованы зависимости, описывающие изменение параметров трубы в мгновенном очаге деформации (МОД) при обратном ходе клети.

Цель работы – развитие теоретических основ определения величины обжатия трубы по толщине стенки в мгновенном очаге деформации при обратном рабочем ходе клети, вывод формул для расчета величин вытяжки и обжатия по толщине стенки в сечениях рабочего конуса при обратном рабочем ходе клети.

Основная часть. Методы исследования. Первый этап заключался в анализе работ, связанных с методом расчета деформационных параметров процесса холодной пильгерной прокатки. Исходя из выделенных в ходе анализа зависимостей и особенностей процесса холодной пильгерной прокатки в различных ее подвидах, будет произведен синтез зависимостей, позволяющих определить обжатие по толщине стенки и вытяжку в мгновенном очаге деформации при рабочем обратном ходе клети. Адекватность выведенных зависимостей будет проверена на расчете силовых параметров, основой для которого являются правильно рассчитанные деформационные параметры. Данные расчетов будут сверены с данными замеров силы прокатки на действующем оборудовании, взятыми из литературных источников. В конце сделаны выводы о перспективах дальнейшего развития теоретических основ метода расчета деформационных параметров рассматриваемого в работе процесса.

Анализ исследований. При холодной прокатке труб клеть движется возвратно-поступательно относительно неподвижно зажатого конуса деформации (рисунок 1, поз. 4).

Рисунок 1. – Схема деформации трубы в стане холодной пильгерной валковой прокатки

Валок стана холодной пильгерной валковой прокатки (ХПТ) состоит из непосредственно валка (см. рисунок 1, поз. 1) и калибра переменного радиуса (см. рисунок 1, поз. 2). Труба деформируется между раствором, образованным ручьем калибра, и оправкой (конусной либо с криволинейной образующей рабочей поверхности)¹ [5; 6]. В ручье, условно, можно выделить три основных зоны: зону обжатия (см. рисунок 1, I), зону калибровки (см. рисунок 1, II) и зону холостого участка (см. рисунок 1, III). Если используется калибр-полудиск, то зона холостого участка разделяется на зону подачи и зону поворота. В зоне деформации можно выделить участки: свободного редуцирования (труба, обжимаясь по диаметру, утолщается), обжатия стенки и предотделки. В участке обжатия стенки деформируются и диаметр, и толщина стенки. В участке предотделки калибруется толщина стенки. В зоне калибровки калибруется диаметр трубы. Здесь внутренняя стенка не касается оправки.

В отличие от стана XIIT стан холодной пильгерной роликовой прокатки (XIITP) деформирует трубу между роликами с диаметром ручья, равным диаметру готовой трубы (рисунок 2, поз. 2), и цилиндрической оправкой (рисунок 2, поз. 1). Диаметр цилиндрической оправки равен внутреннему диаметру готовой трубы. В стане клеть также движется возвратно-поступательно, и в ходе процесса образовывается конус деформации (рабочий конус, пильгерголовка, рисунок 2, поз. 4). Ролики в этом стане опираются своими цапфами на опорную планку. Форма рабочей поверхности опорной планки схожа с разверткой ручья калибра стана XIIT. В начале конуса ролики максимально раздвинуты относительно линии прокатки, в конце конуса ролики сжимаются, образовывая тесный ручей. На станах XIITP прокатывают трубы особой точности. Особенности привода движения клети при верной настройке кулисного механизма привода позволяют максимальным образом нивелировать действие осевых сил. В стане типа XIIT кинематикой процесса деформации управляют подбором ведущей шестерни с необходимым начальным радиусом и подбором диаметра калибра (последнее – если калибр кольцевой).

Рисунок 2. – Схема деформации трубы в стане холодной пильгерной роликовой прокатки

Весь процесс деформации в станах холодной пильгерной прокатки можно представить как движущийся вдоль рабочего конуса мгновенный очаг деформации, параметры которого изменяются непрерывно. Среди параметров мгновенного очага следует выделить обжатие по толщине стенки и вытяжку. В самом мгновенном очаге деформации также разделяют угол редуцирования (зону редуцирования) и угол обжатия стенки (зону обжатия стенки).

В процессе XIIT разделяют обжатие вдоль конуса деформации (рабочего конуса) и обжатие в мгновенном очаге деформации. Обжатие вдоль конуса довольно точно определяют по правилу П.Т. Емельяненко [7; 8]: величина обжатия вдоль конуса деформации равна разности между высотой рассматриваемого сечения и высотой такого сечения, которое отстоит от рассматриваемого на таком расстоянии, при котором объем трубы, заключенный между этими сечениями, равен объему ее подачи перед рабочим ходом клети.

На рисунке 3 показана схема процесса деформации трубы в мгновенном очаге деформации стана ХПТ при обратном рабочем ходе клети [3; 5; 6].

До деформации в МОД некое сечение бесконечно малой протяженности Δx , сдвинутое перед обратным рабочим ходом на величину подачи *m*, имеет диаметр D_{x-a} и толщину стенки S_{x-a} . (рисунок 3, *a*). После обжатия (рисунок 3, *b*) сечение получает вытяжку величиной $\mu_{\Delta x}$ и приобретает значение диаметра D_x с толщиной стенки S_x . Расстояние между сечением рабочего конуса, которое будет иметь параметры толщины стенки и диаметра S_{x-a} и D_{x-a} , и сечением конуса с полученными параметрами S_x и D_x равно

$$a = m + \Delta x \cdot \mu_{\Delta x} \,. \tag{1}$$

Другими словами, величина *а* близка к величине подачи и ее значение зависит от обжатия трубы в МОД. Исходя из этого, в источниках [5; 6] величину обжатия по толщине стенки в МОД при обратном рабочем ходе клети для рассматриваемого случая пильгерной прокатки определили как

$$\Delta S_{x.obp} = (S_{x-m} - S_x) \mu_{ob.x} , \qquad (2)$$

¹ Отчет ВНИТИ № 84-77. Рук. НИР Б.Ю. Меликов, Н.Н. Король. Разработать, исследовать и внедрить процесс прокатки труб на станах ХПТР 8-15 и ХПТР 15-30 конструкции ВНИИМЕТМАШ с увеличением хода клети на стане ХПТР 8-15 с двойной подачей заготовки на станах обеих типоразмеров.

µоб.х – вытяжка в мгновенном очаге деформации данного сечения, где

$$\mu_{o\delta.x} = \frac{F_{x-m}}{F_x};$$

 S_{x-m} – толщина стенки в сечении *x-m*; S_x – толщина стенки в сечении *x*;

т – подача перед обратным ходом;

 F_x – площадь трубы в сечении *x* конуса деформации;

F_{x-m} – площадь трубы в сечении *x-m* конуса деформации.

а – положение клети до обжатия сечения Δx мгновенным очагом деформации; δ – положение клети после обжатия сечения Δx мгновенным очагом деформации; $V_{\kappa i}$ – скорость и направление движения клети при обратном ходе; S_{3a2} – толщина стенки трубы-заготовки; S_{заг} – толщина стенки готовой трубы

Рисунок 3. – Схема обжатия металла в мгновенном очаге деформации при обратном рабочем ходе клети стана холодной пильгерной валковой прокатки

Описание материала исследования. Из определенного выше линейное смещение металла в МОД при обратном рабочем ходе клети можно вычислить из зависимости

$$a = \Delta x = m \frac{F_{x-m}}{F_x} \,. \tag{3}$$

Толщина стенки трубы до деформации в МОД при обратном ходе клети для случая рабочего прямого хода

$$S_{x-m} = S_x + a \cdot (\mathrm{tg}\gamma_i - \mathrm{tg}\alpha_i) = S_x + m \frac{F_{x-m}}{F_x} (\mathrm{tg}\gamma_i - \mathrm{tg}\alpha_i), \tag{4}$$

 $F_{x-m} = \pi \cdot S_{x-m} (2r_{x-m} + S_{x-m});$ где

r_{x-m} – внутренний диаметр трубы в сечении конуса деформации (для ХПТР – готовой трубы);

tgүi – конусность развертки ручья калибра в рассматриваемом сечении;

 $tg\alpha_i$ – конусность оправки в рассматриваемом сечении (для стана XПТР $tg\alpha_i = 0$).

Подставляя значение F_{x-m} в формулу (4), получаем квадратное уравнение, решив которое можно найти значение толщины стенки до деформации обратным рабочим ходом клети стана холодной пильгерной прокатки труб:

$$S_{x-m} = \frac{1}{2A_i} \left(F_i - 2A_i \cdot r - \sqrt{4A_i(A_i \cdot r^2 - F_i(r+S_i)) + F_i^2} \right), \tag{5}$$

 $A_i = \pi \cdot m \cdot (tg\gamma_i - tg\alpha_i)$ (для стана ХПТР $A_i = \pi \cdot m tg\gamma_i$). где Зная S_{x-m} , обжатие стенки в МОД находим из разницы $S_{x-m} u S_x$. Отсюда обжатие в МОД при обратном ходе клети в стане ХПТР в случаи обратного рабочего хода клети

$$\Delta S_{x.o\delta p} = \left(\frac{1}{2A_i} \left(F_i - 2A_i \cdot r - \sqrt{4A_i(A_i \cdot r^2 - F_i(r + S_i)) + F_i^2}\right) - S_x\right) \mu_{o\delta.x}.$$
(6)

Вытяжка в сечении при обратном рабочем ходе клети стана ХПТР находится из выведенной зависимости

$$\mu_{o\delta,x} = \frac{F_{x-m}}{F_x} = (S_x + m \cdot \mathrm{tg}\gamma_x) \frac{2r + S_x + m \cdot \mathrm{tg}\gamma_x}{S_x(2r + S_x)} \,. \tag{7}$$

Аналогичным образом выводится формула для определения вытяжки в МОД при обратном рабочем ходе клети в стане XПТ:

$$\mu_{o\delta,x} = \frac{F_{x-m}}{F_x} = (S_x + m \cdot (tg\gamma_x - tg\alpha_x) \frac{D_x + mtg\gamma_x - S_x - m \cdot (tg\gamma_x - tg\alpha_x)}{S_x(D_x + S_x)}.$$
(8)

В качестве проверки работы данных формул сделан расчет усилий деформации при прямом и обратном ходах клети стана ХПТР для случая прокатки трубы из стали 0Х18Н10Т по маршруту 21х1,7-20х0,6 мм.

Расчетные данные по полученным зависимостям сравнивались с экспериментальными, изложенными в работе². Кроме прочего, в этой работе производились замеры усилий деформации при прямом и обратном ходах клети стана ХПТР. Рассматривался случай именно с подачей заготовки в обоих крайних положениях клети. Прокатка осуществлялась с подачей m = 8 + 8 мм. Поскольку на точность расчета силовых параметров напрямую влияет точность определения деформационных, то по полученным расчетным значениям силовых параметров можно судить о точности расчета величины обжатия по толщине стенки при обратном рабочем ходе клети.

По данным калибровки инструмента (методика расчета уточнялась отдельно) были рассчитана деформационные, а затем и силовые параметры обжатия трубы в зоне деформации стенки. Расчет параметров деформации в зоне редуцирования и калибровки не производился, поскольку значения усилий деформации в этих зонах заведомо значительно меньшие, чем в зоне обжатия стенки. Зона предотделки по известным причинам в калибровке рабочего инструмента стана XПТР не выполняется, т.к. используется цилиндрическая оправка. Результаты расчетов силовых параметров показаны на рисунке 4.

Рисунок 4. – Расчетные графики и графики замеров² усилий деформации при прямом и обратном ходах клети стана ХПТР при подаче заготовки в обоих крайних положениях клети (маршрут 21х1,7-20х0,6, 0Х18Н10Т, *m* = 8 + 8 мм)

Сравнивая данные графиков, можно сделать вывод об адекватности полученных в ходе расчета данных о распределении силы деформации вдоль зоны обжатия. Они хорошо коррелируются с кривыми, полученными в результате экспериментов. Это прямое доказательство верности предложенных теоретических выкладок.

Заключение. В работе показаны дополнительные пути развития теоретических основ процесса холодной пильгерной прокатки труб. Рассмотрен случай ведения процесса при подаче заготовки в обоих крайних положениях клети. Предложенные в статье зависимости для расчета величины обжатия по толщине стенки и вытяжки трубы в МОД при обратном рабочем ходе клети станов типа станов ХПТР и ХПТ уточняют метод расчета параметров

² Отчет ВНИТИ № 84-77. Рук. НИР Б.Ю. Меликов, Н.Н. Король. Разработать, исследовать и внедрить процесс прокатки труб на станах ХПТР 8-15 и ХПТР 15-30 конструкции ВНИИМЕТМАШ с увеличением хода клети на стане ХПТР 8-15 с двойной подачей заготовки на станах обеих типоразмеров.

деформации в этих станах. Результаты расчетов силовых параметров (выполненные на основании результатов расчетов деформационных параметров по выведенным зависимостям) косвенно доказывают верность теоретических выкладок. Полученные расчетные данные не идут в разрез с результатами более ранних исследований.

Предложенные упрощенные зависимости для расчета параметров обжатия при обратном рабочем ходе клети дают небольшие погрешности и могут использоваться в инженерных расчетах. Однако они требуют дальнейшей проверки. Следует заметить, что в предложенных зависимостях не учитываются упругие деформации клети. С этим, возможно, будет связано дальнейшее развитие метода расчета деформационных параметров рассматриваемого случая ведения процесса холодной пильгерной прокатки. Также следует уточнить влияние недеформируемой части металла, которая остается в выпусках калибра от предыдущего рабочего хода.

ЛИТЕРАТУРА

- 1. Технология трубного производства: учеб. / В.Н. Данченко, А.П. Коликов, Б.А. Романцев и др. М.: Интермет Инжиниринг, 2002. – 640 с.
- 2. Столетний М.Ф., Клемперт Е.Д. Точность труб. М.: Металлургия, 1975. 239 с.
- 3. Шевакин Ю.Ф. Калибровка и усилия при холодной прокатке труб. М: Металлургиздат, 1963. 269 с.
- Попов М.В., Атанасов С.В., Беликов Ю.М. Совершенствование процесса периодической прокатки труб. Днепропетровск: Дива, 2008. – 192 с.
- 5. Осада Я.Е., Пляцковский О.А., Беликов Ю.М. Определение обжатий при периодической прокатке труб на станах ХПТ при подаче заготовки в обоих крайних положениях клети // Сталь. – 1978. – № 5. – С. 452–454.
- Определение обжатий при периодической прокатке труб на станах ХПТ при подаче заготовки в обоих крайних положениях клети / Ю.М. Беликов, А.П. Головченко, А.А. Терещенко и др. // Обработка материалов давлением. – 2009. – № 2(21). – С. 294–299.
- 7. Пилипенко С.В. Теоретические основы холодной пильгерной прокатки труб. Новополоцк: Полоц. гос. ун-т им. Евфросинии Полоцкой, 2022. 288 с.
- A deformation mode in a cold rolling condition to provide the necessary texture of the Ti-3Al-2.5V alloy / S.V. Pilipenko, V.U. Grigorenko, V.A. Kozechko et al. // Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. – 2021. – № 1. – C. 078–083.

REFERENCES

- 1. Danchenko, V.N., Kolikov, A.P., Romantsev, B.A. & Samusev, S.V. (2002). *Tekhnologiya trubnogo proizvodstva*. Moscow: Intermet Inzhiniring. (In Russ.)
- 2. Stoletnii, M.F. & Klempert, E.D. (1975). Tochnost' trub. Moscow: Metallurgiya. (In Russ.)
- 3. Shevakin, Yu.F. (1963). Kalibrovka i usiliya pri kholodnoi prokatke trub. Moscow: Metallurgizdat. (In Russ.)
- 4. Popov, M.V., Atanasov, S.V. & Belikov, Yu.M. (2008). *Sovershenstvovanie protsessa periodicheskoi prokatki trub*. Dnepropetrovsk: Diva. (In Russ.)
- 5. Osada, Ya.E., Plyatskovskii, O.A. & Belikov, Yu.M. (1978). Opredelenie obzhatii pri periodicheskoi prokatke trub na stanakh KhPT pri podache zagotovki v oboikh krainikh polozheniyakh kleti. *Stal'*, (5), 452–454. (In Russ.)
- 6. Belikov, Yu.M., Golovchenko, A.P., Tereshchenko, A.A., Frolov, Ya.V., Grigorenko, V.U. & Dekhtyarev, V.S. (2009). Opredelenie obzhatii pri periodicheskoi prokatke trub na stanakh KhPT pri podache zagotovki v oboikh krainikh polozheniyakh kleti [Determination of wringing out at the periodic rolling of pipes on the figures of CRP at the serve of purveyance in both extreme positions of cage]. *Obrabotka materialov davleniem [Materials working by pressure]*, 2(21), 294–299. (In Russ., abstr. in Engl., in Ukrainian)
- 7. Pilipenko, S.V. (2022). *Teoreticheskie osnovy kholodnoi pil'gernoi prokatki trub*. Novopolotsk: Euphrosyne Polotskaya State University of Polotsk. (In Russ.)
- 8. Pilipenko, S.V., Grigorenko, V.U., Kozechko, V.A. & Bohdanov, O.O. (2021). A deformation mode in a cold rolling condition to provide the necessary texture of the Ti-3Al-2.5V alloy. *Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu*, (1), 078–083.

Поступила 08.07.2024

PARAMETERS OF THE DEFORMATION CONTAINMENT VOLUME AT THE BACKWARD STROKE OF COLD-DIE-PILGERING AND COLD-ROLLER-PILGERING MILLS WHEN FEEDING THE BILLET IN EITHER POSITIONS OF THE STAND

S. PILIPENKO

(Euphrosyne Polotskaya State University of Polotsk)

The results of research concerning the development of the theoretical foundations for determining the value of pipe compression by wall thickness in the deformation site, during the reverse working flow of the cage, the cold pilger rolling mill of pipes are presented. Simplified dependencies are derived in the work to calculate the compression parameters during the reverse working stroke of the rolling stand. The proposed dependencies do not take into account the elastic deformations of the rolling mill stand. This will be associated with the further development of the method for calculating the deformation parameters of the considered case of conducting the cold pilger rolling process.

Keywords: cold rolling, pilger rolling, pipes, compression, wall thickness, extraction.