ГЕОДЕЗИЯ

УДК 004.942:528.2/.3

ПРЕДСТАВЛЕНИЕ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ СОВРЕМЕННЫХ ВЕРТИКАЛЬНЫХ ДВИЖЕНИЙ ЗЕМНОЙ КОРЫ В СРЕДЕ ГИС

П.С. ДОЛГИЙ (Представлено: канд. техн. наук, доц. Г.А. ШАРОГЛАЗОВА)

Описан процесс создания ГИС-проекта на тематику геодинамики на основе данных различных исследований. Боле подробно отражена методика создания трехмерных визуализаций в среде ArcScene — визуализации скоростей движений нивелирных пунктов и трехмерных графиков накопления разностей превышений.

Геодинамика – наука междисциплинарная. Она возникла на стыке геодезии, геофизики, геологии, астрономии, океанологии. С развитием компьютерной техники появилась возможность математического моделирования физических процессов и связь геодинамики с математикой и информационными технологиями стала очень тесной [1].

Одна из бурно развивающихся информационных технологий – географические информационные системы (ГИС). ГИС-технологии охватывают всё больше отраслей хозяйства, становятся незаменимым инструментом в научных исследованиях.

В данной работе мы представлена информация о созданном нами ГИС-проекте на тематику геодинамики, на основе данных повторного высокоточного моделирования на Полоцком геодинамическом профиле. Исходные данные включают 10 циклов высокоточного нивелирования (с 2004 по 2015 год за исключением 2005 и 2014) на 11 пунктах, включая 1 исходный – всего 100 измерений [2].

По этим данным при помощи приложения на языке программирования python методом Христова, основанным на полиномиальной аппроксимации, вычислены скорости движения (v) пунктов профиля (таблица 1).

Таблица 1. – Результаты вычислений по методу Христова [3]

Степень аппроксимации
Пункт линейная квалратичная кубическ

	Степень аппроксимации											
Пункт	линейная		квадратичная				кубическая					
	v	m	V	m	a	m	v	m	a	m	b	m
7130	0.206	0.175	0.25	0.442	-0.003	0.033	0.96	1.019	-0.135	0.178	0.007	0.009
8372	0.684	0.218	2.833	0.551	-0.165	0.041	4.304	1.271	-0.438	0.222	0.014	0.011
7701	-0.576	0.3	-1.654	0.759	0.083	0.056	-3.245	1.749	0.378	0.305	-0.015	0.015
7873	0.002	0.321	0.573	0.814	-0.044	0.061	1.887	1.877	-0.288	0.327	0.012	0.017
3895	-0.111	0.337	0.657	0.853	-0.059	0.064	1.691	1.967	-0.251	0.343	0.01	0.017
6284	-0.134	0.339	0.553	0.859	-0.053	0.064	1.781	1.981	-0.281	0.346	0.012	0.017
6931	-0.035	0.352	0.389	0.89	-0.033	0.066	1.115	2.053	-0.167	0.358	0.007	0.018
7100	-0.489	0.403	-0.784	1.021	0.023	0.076	-0.672	2.354	0.002	0.411	0.001	0.021
3902	-0.454	0.445	-0.723	1.127	0.021	0.084	-0.004	2.599	-0.113	0.453	0.007	0.023
5960	-0.247	0.478	0.408	1.211	-0.05	0.09	2.342	2.792	-0.409	0.487	0.018	0.025
v – скорость, а – ускорение, m – точность определения неизвестной.												

v – скорость, a – ускоренис, iii – точность определения неизвестной.

Помимо этих данных, для создания ГИС-проекта использовались: топографические карты масштаба 1:50 000; сейсмотектонические, геологические карты; данные наблюдений на сейсмологических пунктах; цифровые модели рельефа (ЦМР) [4]; векторные данные OpenStreetMap [5] (водные объекты, растительность, постройки, дорожная сеть).

Данные были представлены на карте в двумерном виде. Топографические карты привязаны в системе координат проекции Гаусса – Крюгера 35-й зоны и трансформированы; пункты нивелирования отображены по координатам и соединены линией профиля; по данным сейсмотектонических карт нанесены разломные структуры; по данным источника [6] обозначены очаги землетрясений, зафиксированных сейсмологическими постами, оборудованными для наблюдения за Полоцким разломом. Местоположение разлома на карте согласуется с тем, которое выявлено по результатам повторного нивелирования.

Наиболее интересный результат дает 3D-визуализация в ГИС. Поэтому в качестве платформы для выполнения проекта выбран многофункциональный программный продукт ArcScene.

Выполнена визуализация скоростей движения пунктов и графики накопления разностей превышений в трехмерном виде для различных эпох.

Визуализация скоростей движения пунктов (рисунок 1). В вид сцены добавлена ЦМР, размещены векторные объекты, для которых в качестве источника базовых высот выбрана ЦМР. Вокруг объектов пунктов построена буферная зона радиусом 100 метров. Вытягивание полученных полигонов установлено по полю со значениями скоростей движения пунктов, увеличенных в сто раз. Линия профиля обозначена трехмерным символом типа Stripe и для наглядности приподнята над ЦМР. Выполнена классификация пунктов на опускающиеся и поднимающиеся, и они отображены различными цветами. Имена пунктов подписаны с помощью 3D-текста.

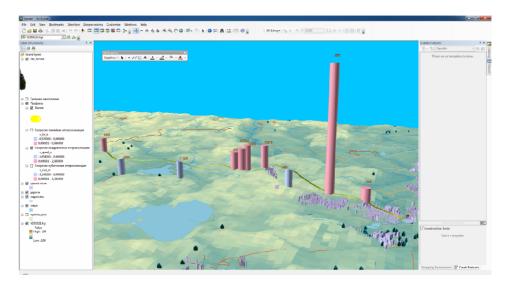


Рисунок 1. – Пример визуализации скорости движения пунктов в среде ArcScene

Построение графиков накопления разностей превышений в трехмерном виде для различных эпох (рисунок 2). Для этой цели разработаны два скрипта с использованием библиотеки агсру языка руthon. Первый из них считывает данные объектов пунктов и линии нивелирного хода и выполняет построение рядов точечных объектов для каждого пункта. Рассмотрим алгоритм его работы.

- 1) с помощью функции SearchCursor библиотеки агсру считываем геометрию линии нивелирного хода и формируем список пар координат её вершин;
 - 2) выделяем из списка те вершины, которые являются конечными точками секций хода;
- 3) решая обратную геодезическую задачу на плоскости, вычисляем дирекционный угол A (формулы (1), (2)) из конечной точки каждой секции в начальную;

$$\Delta X = X_B - X_A; \quad \Delta X = X_B - X_A; \tag{1}$$

$$r = \operatorname{arctg} \left| \frac{\Delta Y}{\Delta X} \right|; \tag{2}$$

$$A = r$$
 при $\Delta X > 0$; $\Delta Y > 0$;

$$A = 180 - r$$
 при $\Delta X > 0$; $\Delta Y < 0$;

$$A = 180 + r$$
 при $\Delta X < 0$; $\Delta Y < 0$;

$$A = 360 - r$$
 при $\Delta X < 0$; $\Delta Y > 0$;

4) решая прямую геодезическую задачу на плоскости (формулы (3)–(4)), используя направление, перпендикулярное к полученному дирекционному углу и принимая расстояние между точками двух графиков равным 100 м, строим точки и вносим в них атрибутивные данные: значение разности накопления превышений, эпоху и пункт, данные которого представляет точка.

$$X = X_0 + D \cdot \cos A; \tag{3}$$

$$Y = Y_0 + D \cdot \sin A. \tag{4}$$

При необходимости, в случае неудачного расположения точек, построенных с помощью скрипта, можно изменить их местоположение вручную.

Второй скрипт считывает данные из построенных точек и строит полилинии с координатой Z, которые и будут отображены в ArcScene в качестве графиков. Рассмотрим алгоритм построения линий графиков.

- 1) считываем геометрию и атрибуты объектов точек перегиба с помощью функции SearchCursor и преобразуем итератор, возвращаемый функцией, в список;
- 2) сортируем список точек по ходу линии нивелирования и по эпохам на тот случай если выполнялось ручное редактирование точек:
- 3) при помощи библиотеки pyshp [7] выполняем построение полилиний с координатой Z, передавая в качестве координат X и Y координаты точек для одной эпохи, а в качестве координаты Z значение накопления разностей превышений, а также добавляем атрибут эпохи.

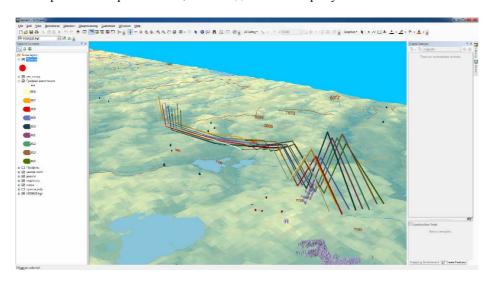


Рисунок 2. – Графики накопления разностей превышений в среде ArcScene

В ходе данной работы мы доказали, что современные ГИС-технологии можно успешно использовать для исследований в геодинамике. Построенные нами визуализации скорости современных вертикальных движений земной коры – лишь малая часть возможностей ГИС. При наличии большого количества данных различных наук о Земле, представленных в ГИС, можно максимально приблизиться к комплексному подходу в исследовании природных явлений.

ЛИТЕРАТУРА

- 1. Шароглазова, Г.А. Многодисциплинарный подход к моделированию геодинамических процессов / Г.А. Шароглазова П.С. Долгий // Вестн. Полоц. гос. ун-та. Сер. F, Строительство. Прикладные нау-ки. -2018. -№ 8. -С. 180-184
- 2. Инструментальные исследования современной геодинамики в Полоцком регионе : отчет о НИР / Полоц. гос. ун-т ; рук. Г.А. Шароглазова. Новополоцк, 2013. 83 с. № ГБ 0314.
- 3. Долгий, П.С. Моделирование развития деформационных процессов природных и инженерных объектов по результатам инструментальных исследований с представлением в среде ГИС: дис. ... магистра техн. наук: 1-40 80 04 Математическое моделирование, численные методы и комплексы программ / П.С. Долгий; М-во образования Респ. Беларусь, Полоц. гос. ун-т; науч. рук. Г.А. Шароглазова. Новополоцк: ПГУ, 2018. 83 с.
- 4. Data [Electronic resource]. Mode of access: https://asterweb.jpl.nasa.gov/data.asp. Date of access: 15.05.2018.
- 5. OpenStreetMap [Electronic resource]. Mode of access: https://www.openstreetmap.org/#map=13/55.5179/28. 7450. Date of access: 15.05.2018.
- 6. Оценка сейсмогеодинамических условий в районе площадки строительства Полоцкой ГЭС за период: 15.09.2006–15.12.2006 (договор 4/2006 от 14.09.2006 г. с УО «Полоцкий государственный университет» : отчет о результатах научно-исследовательских работ / А.Г. Аронов, Р.Р. Сероглазов, Т.И. Аронова, В.М. Колковский, О.Н. Кулич. Минск, 2006.
- 7. GitHub Geospatial Python/PyShp: This library reads and writes ESRI shapefiles in pure Python. [Electronic resource]. Mode of access: https://github.com/GeospatialPython/pyshp. Date of access: 25.05.2018.