УДК 004.932

ОПРЕДЕЛЕНИЕ ПРОЧНОСТНЫХ ПАРАМЕТРОВ МАТЕРИАЛА ПО ЦИФРОВОЙ ОБРАБОТКЕ ЦВЕТНОГО ИЗОБРАЖЕНИЯ

С. И. РОГОВСКИЙ

(Представлено: канд. физ.-мат. наук, доц. С. А. ВАБИЩЕВИЧ)

Рассмотрены вопросы использования цифровой обработки изображений отпечатков, полученных при испытаниях материала на микротвердость. С целью определения геометрических размеров отпечатков, зоны разрушения, разработан алгоритм обработки изображения и реализована программа обработки. Результаты моделирования размеров зоны трещинообразования использованы при испытаниях полимерных пленок на микротвердость для определения прочностных характеристик: микротвердости и трещиностойкости.

Введение. Информационные технологии широко распространены во всех сферах жизнедеятельности человека. Они дают нам возможность быстро и наиболее точно проводить расчеты, обрабатывать информацию с наибольшей точностью и исключить субъективность в анализе результатов. Одной из таких является компьютерное зрение, позволяющее производить обнаружение, классификацию, отслеживание объектов.

Современный процесс производства полупроводниковых приборов предусматривает ряд технологических обработок, в результате которых, помимо прочих, изменяются механические свойства материалов, что, в свою очередь, может приводить к появлению микротрещин, царапин, сколов и иных дефектов поверхности. Для определения прочностных характеристик материалов используются различные методики, однако наиболее приближенным к реальному технологическому процессу является микроиндентирование, т.к. данный метод позволяет наиболее точно моделировать контактное взаимодействие абразивных частиц с обрабатываемым материалом [1]. Существует необходимость получения программного продукта для распознавания цифровых изображений, позволяющего проводить на основании анализа фотоснимков полный расчет прочностных характеристик материала. В качестве среды разработки программного продукта был выбран язык программирования Руthon. Схема обработки и анализа данных цифровых изображений сводилась к следующим этапам: анализ входных данных изображения; обработка входных данных; использование медианного фильтра; сегментация изображения; обнаружение объектов, поиск контуров изображения; отображение контуров на изображении; вычисление геометрических параметров объекта фотографирования.

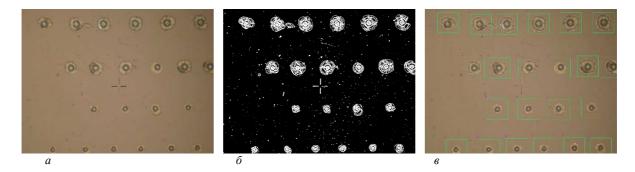
Целью настоящей работы была разработка алгоритма и программы обработки изображений, позволяющий получить информацию о прочностных характеристиках материалов на основании анализа отпечатков, образующихся при микроиндентировании образцов.

Алгоритм, программа, расчет прочностных параметров. Входными данными для обработки являются фотоизображения отпечатков при индентировании полимера (рисунок 1, а). Обработка данных изображений происходила с использованием библиотеки OpenCV и языка программирования *Python*. OpenCV (Open Source Computer Vision Library) – одна из самых известных библиотек для приложений по компьютерному зрению [2].

Входное изображение содержит шумы и перепады цвета, что уменьшает точность и усложняет обработку изображения. Для уменьшения шумов применятся медианный фильтр. Медианный фильтр убирает шумы и не задевает края объектов.

Контур объекта характеризуется резким изменением градиента цвета. Для поиска изменений цвета применяется преобразование Собеля – дискретный дифференциальный оператор, вычисляющий приближенное значение градиента яркости изображения. На рисунке 1, б показан результат преобразования после применения оператора Собеля.

На полученном изображении необходимо найти объекты и выделить их контуры. Метод *cv2.FindContours()* библиотеки OpenCV позволяет внешний контур объекта. При таком поиске выделяется много не нужных контуров, связанные с небольшими дефектами на материале. Эти контуры имеют малую площадь, что позволяет их отсортировать от нужных объектов. Для отрисовки полученных контуров применяется метод *cv2.drawContours*. После отрисовки контуров видно, что полученный контур совпадает с входным изображением.


На рисунке 2 показан результат обработки изображения в виде массива изображений отпечатков, отсортированных по нагрузкам (50, 20, 10 и 5 г с верхнего ряда вниз). Программа выделяет область разрушения, что дает возможность рассчитать среднее значение радиальной трещины *L*. Также определяется контур отпечатка на поверхности материала в виде неправильного четырехугольника. Затем рассчи-

Полоцкого государственного университета имени Евфросинии Полоцкой

тывается среднее значение диагонали отпечатка d. По результатам измерений вычисляется микротвердость H и коэффициента вязкости разрушения (трещиностойкость) K_{1c} материала [3] по формулам:

$$H = \frac{1,854P}{d^2}; \quad K_{1C} = 0,016 \left(\frac{E}{H}\right)^{\frac{1}{2}} \frac{P}{L^{\frac{3}{2}}},$$

где E – модуль Юнга материала; P – нагрузка на индентор. Значения трещиностойкости, найденные с использованием программной обработки, отличались от значений K_{1c} при ручной обработке данных эксперимента не более чем на 8 %, что соответствовало относительной погрешности эксперимента.

a — входное изображение с нанесенными с различной нагрузкой отпечатками; δ — изображение, преобразованное после применения оператора Собеля; ϵ — изображение с выделенными объектами обработки

Рисунок 1. - Изображения объектов обработки

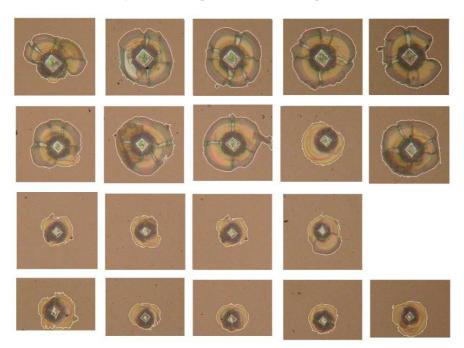


Рисунок 2. – Результат обработки изображений с нанесенными контурами области разрушений

Заключение. Таким образом, реализован алгоритм обработки цветных изображений, полученных при фотографировании поверхности материала после испытаний на микротвердость, имеющий своей целью определение геометрических размеров разрушений и отпечатков. Это имеет существенное значение для объективного определения прочностных характеристик материалов и для автоматизации процесса измерения в материаловедении.

ЛИТЕРАТУРА

- 1. Литвинов, Ю.М. Методология определения механических свойств полупроводниковых материалов с помощью метода непрерывного вдавливания индентора/ Ю.М. Литвинов, М.Ю.Литвинов// Известия вузов. Материалы электронной техники. 2004. № 4. С.11-16.
- 2. Bradski, G. Learning OpenCV. Computer vision with the OpenCV library/ G.Bradski, A.Kaehler //O'Reilly Media, Inc., 2008.
- 3. Колесников, Ю.В. Механика контактного разрушения / Ю.В. Колесников, Е.М. Морозов. М.: Наука, 1989. 220 с.