УДК 665.777.4

ИЗМЕНЕНИЕ ХАРАКТЕРИСТИК ПОВЕРХНОСТИ И РАСПРЕДЕЛЕНИЯ ПОР ПО РАЗМЕРАМ ПРИ ПРОКАЛКЕ НЕФТЯНОГО КОКСА В ПРИСУТСТВИИ СУЛЬФАТА КАЛИЯ

В. А. ЕМЕЛЬЯНОВА, Н. А. МАНЯК (Представлено: канд. техн. наук, доц. А. А. ЕРМАК)

Нефтяной кокс, полученный на установке замедленного коксования нефтяных остатков, подвергнут прокалке в присутствии сульфата калия, исследовано влияние этого процесса на структурные характеристики кокса.

Введение. Углеродные сорбенты могут быть получены из разнообразного углеродсодержащего сырья – древесины, антрацита, каменного и бурого угля, торфа, а также отходов их переработки, например, лигнина, сельскохозяйственных отходов и т.д. и выпускаются промышленностью в трех различных формах: гранулированной, дробленой и порошковой. В промышленном производстве активных углей во всем мире в качестве сырья чаще всего используются каменный уголь, скорлупа кокосовых орехов и древесина, причем до 70 % сырьевой базы составляют ископаемые угли [1].

Исходные углеродсодержащие материалы, в частности уголь и кокс, обладают относительно низким значением пористости и применение их в процессах адсорбции малоэффективно. Для увеличения пористости и удельной поверхности их подвергают активации [2].

Основная часть. Для получения углеродных сорбентов, применяемых в качестве адсорбентов и носителей катализаторов, обычно используются методы физической или химической активации. Получение углеродных сорбентов с использованием физической активации включает следующие стадии: подготовка сырья (сепарация, дробление, сушка и др.); пиролиз (термообработка без доступа окислителя при температуре 550–1000 °C; активация (термообработка в присутствии окислителя, CO₂ или водяного пара при 700–1000 °C) [3].

Другой вид активации заключается в обработке угля солями, которые при высокой температуре выделяют газ-активатор (например, CO₂, O₂): карбонатами, сульфатами, нитратами, кислотамиокислителями (азотной, серной, фосфорной и др.) и горячими концентрированными растворами некоторых солей.

Медицинские активные угля за рубежом готовят, как правило, пропиткой угля-сырца растворами сульфида и сульфата калия. После пропитки уголь подвергают активации при 900 – 1000 °C. При этом протекает реакция K₂SO₄ + 4C = K₂S + 4CO [4].

Цель работы заключается в изучении влияния сульфата калия при прокалке нефтяного кокса на характеристики его поверхности и распределение пор по размерам.

Экспериментальная часть.

В качестве объекта исследований использовался нефтяной кокс процесса замедленного коксования. Гранулометрический состав: менее 1,25 мм – 24,92% масс., от 1,0 до 1,25 мм – 30,10% масс., от 1,25 до 0,50 мм – 14,48% масс., от 0,5 до 2 мм – 30,5% масс. Микроструктура исследуемого кокса оценивается в 4 баллах по ГОСТ 26132, что соответствует средневолокнистой структуре. Насыпная плотность – 782,25 кг/м³. Содержание летучих соединений по ГОСТ 55660 составляет 8,5% масс. Содержание серы, определенное на элементном анализаторе UNICUBE, составляет 4,1% масс.

Введение активатора, в качестве которого использовался сульфат калия, в образцы кокса осуществлялось путём их пропитки расчётным количеством 20% масс. водного раствора сульфата калия в течение 2-х часов. Затем образцы высушивали при температуре (105 ± 5) °C до постоянной массы и подвергались карбонизации.

Карбонизация исходного кокса и образцов с различным содержанием активатора и добавок проводилась в закрытых крышкой тиглях в муфельной печи при температуре (900 ± 5) °C в течение 2 часов. После охлаждения до комнатной температуры полученные образцы промывались на фильтре дистиллированной водой, затем разбавленным раствором серной кислоты до нейтральной реакции, а затем вновь дистиллированной водой, для удаления солей. Промытые образцы сушили при температуре (105 ± 5) °C.

Изучение характеристик поверхности и распределения пор в исследуемых образцах кокса проводилось при помощи анализатора площади поверхности и распределения пор BELSOPR MAX. Перед проведением испытаний образцы подвергались сушке и дегазации под вакуумом при температуре 160 °C в течение часа. Далее были получены изотермы адсорбции и десорбции исследуемых образцов при температуре 298 К. В качестве адсорбтива использовался углекислый газ (рисунок 1). Полоцкого государственного университета имени Евфросинии Полоцкой

Рисунок 1. – Изотермы адсорбции (ADS) и десорбции (DES) CO2 при температуре 298 К образцов исходного нефтяного кокса и карбонизированного нефтяного кокса без и с добавкой К2SO4

Полученные изотермы адсорбции/десорбции свидетельствует об относительно слабом взаимодействии CO_2 с поверхностью исследуемых образов. Это подтверждается величиной констант адсорбционного равновесия, т.е. отношения констант скоростей адсорбции и десорбции, характеризующих прочность связи молекул адсорбируемого вещества с поверхностью адсорбента. При карбонизации исходного кокса, а также при введении в кокс перед стадией карбонизации K_2SO_4 константа адсорбционного равновесия возрастает (таблица 1), что свидетельствует об усилении взаимодействия CO_2 с поверхностью карбонизированных образцов по сравнению с поверхностью исходного кокса. Характеристическая энергия адсорбции CO_2 , определенная по методу Дубинина-Астахова, у образцов карбонизированного кокса также выше, чем у исходного кокса (таблица 1).

Величина V_a , равная объёму адсорбированного CO₂ при стандартных условиях на 1 грамм адсорбента, говорит об относительно низкой пористости исследуемых образцов. В ходе карбонизации суммарный объём пор, определенный по методу ВЕТ относительно исходного кокса, снижается более чем в 2,5 раза. Добавка в образец кокса перед карбонизацией K₂SO₄ в количестве менее 75% масс. приводит к снижению суммарного объёма пор. Так, при добавлении к исходному коксу 10% масс. К₂SO₄ суммарный объём пор снизился относительно исходного кокса в 15 раз, а относительно карбонизированного исходного кокса более чем в 6 раза. При этом с повышением содержания K₂SO₄ в образце до 75% масс. суммарный объём пор не превысил их объём в исходном карбонизированном коксе. Следовательно, количество вводимого в исходный нефтяной кокс в процессе его пропитки K₂SO₄ при определенных концентрациях уменьшает пористость кокса на стадии его карбонизации.

Очевидно, что при этом будет изменяться и удельная поверхность образцов карбонизированного нефтяного кокса, а также, что наиболее важно, распределение в нём пор по форме и размеру, что неизбежно повлияет на структуру получаемого сорбента при проведении стадии активации. Характеристики поверхности и распределения пор в образцах исходного, карбонизированного кокса и кокса с добавлением K₂SO₄ приведены в таблице 1. Данные получены путем обработки изотерм адсорбции при помощи аналитического программного обеспечения BELMasterTM компании MicrotracBEL Corp. (Япония).

Анализ полученных результатов показал, что удельная площадь поверхности нефтяного кокса по методу ВЕТ в ходе карбонизации снижается в 2,7 раза. При введении в кокс перед карбонизацией путем пропитки до 33% масс. К₂SO₄ значение данного показателя снижается ещё в большей степени, что свидетельствует о том, что в процессе карбонизации нефтяного кокса в присутствии относительно небольшого количества активатора происходит уменьшение содержащихся в нём пор. При повышении содержания К₂SO₄ в коксе до 50% масс. удельная поверхность кокса практически не изменяется.

	Значение для образцов					
Показатель	исходный кокс	кокс после карбонизации				
		при содержании К ₂ SO ₄ , % масс.				
		0	10	33	50	75
Удельная площадь поверхности по методу	17 715	(4007	1.01(7	0 7075	0 (550	0.7446
ВЕТ, м ² /г	17,715	0,4927	1,0107	0,7875	0,0552	0,7440
Суммарный объём пор по методу ВЕТ,	10.274	7 6651	1 250	1.096	0.744	1.072
MM^3/Γ	19,274	7,0054	1,230	1,080	0,744	1,072
Средний диаметр пор по методу ВЕТ, нм	4,3520	4,7224	4,9179	5,5152	4,5431	5,7602
Константа С в уравнении ВЕТ	7,228	6,026	11,701	13,048	13,056	13,085
Удельная площадь поверхности по методу	84 522	24 282	1 2952	6 4091	2 1707	2 7260
Ленгмюра, м ² /г	84,555	24,202	4,3052	0,4081	2,1797	3,7309
Константа адсорбционного равновесия –						
отношение констант скорости адсорбции/	0,00978	0,01868	0,01405	0,00565	0,02743	0,01263
десорбции						
Потенциальная энергия адсорбции по мето-	3,1974	4,1742	3,7949	3,6563	4,7913	3,7141
ду DA (метод Дубинина-Астахова), Дж/моль						
Суммарный объем пор щелевидной формы	30.641	7 5 1 6	1.065	2 407	0.003	2 1 1 3
по методу GCMC, мм ³ /г, в т.ч.	50,041	7,510	1,005	2,497	0,993	2,115
– микропоры	5,894	3,259	0,546	0,295	0,359	0,242
– мезопоры	24,747	4,257	0,519	2,202	0,634	1,871
Суммарный объем пор цилиндрической	63,48	24,69	2,141	3,284	0,795	2,909
формы по методу GCMC, мм ³ /г, в т.ч.						
– микропоры	2,10	1,86	0,075	0,126	0,079	0,062
– мезопоры	7,54	2,15	1,237	0,463	0,716	0,0785
– макропоры	53,84	20,68	0,829	2,695	0	2,062
Суммарная удельная площадь поверхность						
пор щелевидной формы по методу GCMC,	11,929	6,6383	1,3747	0,6453	0,6902	0,6266
м ² /г, в т.ч.						
– микропоры	6,688	4,5944	1,0606	0,4539	0,5148	0,3722
– мезопоры	5,241	2,0439	0,3141	0,1914	0,1754	0,2544
Суммарная удельная площадь поверхность						
пор цилиндрической формы по методу	13,4030	7,7487	0,9373	0,7035	0,8184	0,6009
GCMC, м ² /г, в т.ч.						
– микропоры	4,0853	4,6775	0,1661	0,3273	0,1674	0,1405
– мезопоры	8,0497	2,4276	0,7434	0,2743	0,651	0,4075
– макропоры	1,2680	0,6436	0,0278	0,1019	0	0,0529

Таблица 1. – Характеристики поверхности и пор образцов нефтяного кокса (адсорбтив CO₂ при температуре 298 К)

Средний диаметр пор, определенный по методу ВЕТ, увеличивается, что свидетельствует об изменении их распределения по размерам при карбонизации кокса как без, так и с добавлением K₂SO₄.

Для анализа распределения пор по размерам был использован метод компьютерного моделирования GCMC (Grand Canonical Monte Carlo method), в котором точно решается строгая молекулярноуровневая модель адсорбции, основанная на выбранной модели формы пор [5, 6]. Данный метод позволяет путем анализа изотерм адсорбции CO₂ при 298 К проводить оценку распределения пор щелевидной и цилиндрической форм в углеродных материалах во всем диапазоне размеров от микро- до макропор. Согласно классификации Международного союза теоретической и прикладной химии (ИЮПАК), к микропорам относятся поры с диаметром менее 2 нм, к мезопорам с диаметром от 2 до 50 нм и к макропорам с диаметром 50 и более нм.

При карбонизации нефтяного кокса суммарный объем в нем пор щелевидной и цилиндрической форм снижается соответственно в 4,1 и 2,6 раза (см. таблицу 1). При этом наибольшее уменьшение объема мезопор в 5,8 раза щелевидной формы и в 3,5 раза цилиндрической формы. Объем микропор щелевидной формы снижается на 44,7%, а цилиндрической формы – на 11,4%. Объем макропор цилиндрической формы в процессе карбонизации исходного кокса снижается в 2,6 раза. Аналогичные тенденции наблюдаются и в изменениях удельной площади поверхности пор. Однако данный показатель у микропор цилиндрической формы при карбонизации увеличивается на 0,5922 м²/г, или 14,5%. При этом формируются микропоры цилиндрической формы с меньшим средним диаметром. При карбонизации кокса также происходит формирование микропор щелевидной формы с меньшей средней шириной, чем в исходном коксе. При этом микропор щелевидной формы по объему образуется больше, чем микропор цилиндрической формы.

Полоцкого государственного университета имени Евфросинии Полоцкой

После пропитки нефтяного кокса раствором K_2SO_4 в результате его карбонизации наблюдаются следующие закономерности. Добавление 10% масс. K_2SO_4 к нефтяному коксу после его карбонизации приводит к значительному уменьшению объёма и удельной поверхности всех видов пор как относительно исходного нефтяного кокса, так и карбонизированного кокса без добавления K_2SO_4 . Суммарный объём пор щелевидной формы относительно исходного и карбонизированного кокса уменьшается соответственно в 30 и 7 раз. Объём пор цилиндрической формы при добавлении 10% масс. K_2SO_4 уменьшается в большей степени – в 30 и 11,8 раза. При этом суммарная удельная площадь поверхности всех видов пор снижается в 8,5 и 13 раза. Добавление 75% масс. K_2SO_4 к нефтяному коксу после его карбонизации приводит также к значительному уменьшению объёма и удельной поверхности всех видов пор.

Вывод. Согласно полученным данным, введение сульфата калия в нефтяной кокс в процессе его активации приводит к снижению поверхностных показателей, за исключением среднего диаметра пор, относительно исходного и карбонизированного кокса без K₂SO₄. Соответственно, использование сульфата калия в качестве активатора для получения сорбентов на основе нефтяного кокса неэффективно.

ЛИТЕРАТУРА

- 1. Кинле Х. Активные угли и их промышленное применение / Х. Кинле, Э. Бадер; пер. с нем. Л.: Химия, 1984, 216 с.
- Баширов, И.И. Получение формованного углеродного адсорбента из нефтяного сырья методами паровой и щелочной активации: дис. ... канд. техн. наук: 05.17.07 / Баширов И.И. – Уфа, 2016. – 121 л.
- Чесноков, Н.В. Получение углеродных сорбентов химической модификацией ископаемых углей и растительной биомассы / Н.В. Чесноков, Н.М. Микова, И.П. Иванов, Б.Н. Кузнецов // Журнал Сибирского федерального университета. Химия. – 2014. - №1. – т.7. – С. 42-52.
- 4. Кельцев, Н.В. Основы адсорбционной техники / Н.В. Кельцев. 2-е изд., перераб. и доп. М., Химия, 1984. – 592 с., ил.
- Richard, C. Modelling and Simulation in the Science of Micro- and Meso-Porous Materials / C. Richard, A. Catlow, Veronique Van Speybroeck and Rutger A. van Santen. – Elsevier, 2017. - 370 p. DOI: 10.1016/C2015-0-04040-0
- Kohmuean, P. Monte Carlo Simulation and Experimental Studies of CO₂, CH₄ and Their Mixture Capture in Porous Carbons / P. Kohmuean, W. Inthomya, A. Wongkoblap, C. Tangsathitkulchai // Molecules. – 2021. – Volume 26, Issue 9. – 2413. DOI: 10.3390/molecules26092413