УДК 665.6

ПОЛУЧЕНИЕ БЕЛОГО МАСЛА АДСОРБЦИОННОЙ ОЧИСТКОЙ ПРОДУКТОВ ФРАКЦИОНИРОВАНИЯ ОСТАТКА ГИДРОКРЕКИНГА

М.В. СОРОГОВЕЦ, Ю.В. ЛАПИНА (Представлено: канд. техн. наук А.В. МИТИНОВ)

Описан способ получения белого вазелинового масла адсорбционной очисткой на неподвижном слое адсорбента базового масла гидрокрекинга НС4. Показана возможность получения белого масла с использованием в качестве адсорбента цеолита типа NaX. Исследованы свойства полученного продукта. Изучен процесс регенерации адсорбента прокаливанием.

Современные тенденции развития нефтепереработки связаны, прежде всего, с ее углублением за счет использования новых вторичных процессов.

Основная задача — увеличение выхода нефтяных топлив. Побочные продукты — остаток гидрокрекинга также представляют интерес как потенциальный источник получения новых нефтепродуктов. Специфика процесса гидрокрекинга в том, что гидрогенизационные процессы позволяют увеличить содержание парафинов и нафтенов, что делает целесообразным получения из остатка гидрокрекинга белого масла.

Белые масла — специфическая группа минеральных низковязких масел, получаемых специальной очисткой и применяемых как в технических целях, так и в медицине, фармакологии и косметике. В химической промышленности белые масла применяются в качестве инициаторных — инертного носителя инициатора полимеризации в процессе получения полиэтилена, также используются в качестве редукторного масла и в качестве лампадного.

Традиционным методом получения белых масел является сернокислотная очистка. Метод позволяет получить высокую степень очистки, что позволяет применять продут даже в медицинских целях, но сопряжен с достаточно высокими затратами на процесс. Сернокислотная очистка является самым старым и широко распространенным в нефтяной промышленности методом удаления из масляных дистиллятов асфальто-смолистых веществ, кислород- и серосодержащих соединений и других нежелательных примесей. Этот метод применяется также и для регенерации отработанных масел (обычно высокой степени старения), как моторных с высокоэффективными комплексными присадками, так и сильно окисленных отработанных трансформаторных и других специальных масел.

Для технических целей высокая степень очистки не требуется, что позволяет применить более дешевый процесс. Кроме сернокислотной очистки для отбеливания масел может быть применена гидроочистка, адсорбционная очистка, заключающаяся в извлечении из них смолистых и сернистых соединений, непредельных и ароматических углеводородов путем адсорбции.

В связи с тем, что в Республике Беларусь белые масла не производятся, задача получения технического белого масла на основе отечественного сырья является актуальной.

Основная часть. Белые масла состоят преимущественно из углеводородов парафинового ряда и получаются очисткой минеральных нефтяных масел низковязких фракций. Перечень свойств типичных белых масел приведен в таблице 1.

Таблица 1. – Свойства минеральных белых масел

№	Наименование показателей	Масло вазелиновое	Масло	Масло
		по ГОСТ 3164	Purity FG WO.	AGIP BIO 12.
1	Вязкость кинематическая при 50 °C	28,0 - 38.5	36.1	69
2	Вязкость кинематическая при 100 °C		5.8	
3	Температура вспышки, определяемая	185	220	212
	в закрытом тигле, °С, не ниже	103	220	212
4	Плотность при 20 °C, кг/м ³	28,0-0,890	I	0,870
5	Индекс вязкости		105	-
6	Зольность, %, не более	0,005	_	-
7	Температура застывания, °С, не выше	-8	-18	-15
8	Содержание воды и парафина	Отсутствие	Отсутствие	Отсутствие
9	Цвет по ASTM, не более		30	30
10	Цвет, условные единицы КНС-1, не более	6		

В качестве сырья для производства белых масел целесообразно выбирать полупродукты, содержащие в основном парафины и нафтены. Самым близким по уровню свойств базовым маслом, производимым в Республике Беларусь, является масло НС-4 по ТУВҮ 300042199.037-2015, которое и было выбрано в качестве объекта исследования. Свойства базового масла НС-4 описаны в таблице 2.

Таблица 2. – Свойства масла НС4 по ТУВУ 300042199.037-2015

No	Наименование показателей	Требования по ТУ В Y 300042199.037-2015	Фактическое значение	Методы испытания
1	Вязкость кинематическая при 100°C	4,00 – 5,00	4,556	СТБ 1798-2007
2	Индекс вязкости, не менее	120	121	СТБ 1797-2007
3	Массовая доля серы, %, не более	0,030	0,015	СТБ 1420-2003
4	Температура текучести, °С, не выше	-12	-14	СТБ 1557-2015
5	Температура вспышки, определяемая в открытом тигле, °С, не ниже	200	230	ГОСТ 4333-87
6	Температура самовоспламенения, °С, не ниже	230	351	ГОСТ 12.1.044-89
7	Массовая доля воды, %, не более	Следы	Следы	ГОСТ 2477-65
8	Потери от испарения, % масс, не более	18,0	10,7	СТБ 1370-2002
9	Цвет по ASTM, не более	1,5	1,0	СТБ 1796-2007
10	Массовая доля механических примесей, %	Отсутствие	Отсутствие	ГОСТ 6370-83
11	Плотность при 15 °C, кг/м ³	823 – 836	824,4	СТБ ИСО 12185- 2007
12	Массовая доля селективных растворителей, %, не более	0,3	0,001	ГОСТ 1057-88

Как видно из таблицы 2, по большинству показателей уровень свойств масла HC-4 соответствует уровню свойств белых масел. Единственный параметр, требующий улучшения, это цвет.

Обесцвечивание масла гидрокрекинга проводили адсорбционной очисткой при комнатной температуре на лабораторной установке, включающей закрепленную на штативе делительную воронку с засыпкой слоя адсорбента в приемную колбу. В ходе эксперимента в подготовленную делительную воронку с адсорбентом заливали порцию очищаемого масла. Скорость прохождения масла через адсорбент регулировали краном. Степень очистки оценивали по коэффициенту пропускания при длине волны 490 нм, определяемую на фотоэлектрическом колориметре. В ходе эксперимента исследовались вопросы выбора эффективного адсорбента, определение живучести адсорбента до его насыщения, возможности регенерации адсорбента.

В качестве пробных адсорбентов использовался цеолит NaX, активированный уголь, цеолит A и нефтяной кокс. Опыты проводились при одинаковой скорости потока, ориентируясь на нижнюю границу рекомендаций из литературных источников и высоту слоя 150 мм. Для получения требуемых кондиций по цвету масла очистку проводили в три стадии.

Из рисунка 1 видно, что при выбранной скорости пропускания цвет очищенного масла начинает ухудшаться (коэффициент пропускания снижаться, возвращаясь к исходному значению неочищенного масла). После пропускания объема масла, превышающего шесть объемов загруженного адсорбента, для второй и третьей стадий очистки емкость адсорбента выше.

Полученное после трех ступеней очистки белое масло исследовали стандарными методами. Свойства очищенного масла гидрокрекинга приведены в таблице 3.

Эффективность очистки оценивалась с использованием фотоколориметра по изменению коэффициента пропускания на длине волны 490 нм. Лучшие результаты, приближающиеся к 100 % коэффициенту пропускания, получены только после трехкратной очистки на цеолите X и активированном угле.

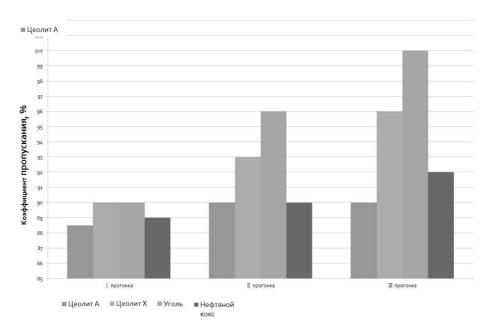


Рисунок 1. – Влияние типа адсорбента на качество адсорбционной очистки

Таблица 3. – Свойства очищенного масла НС-4

No	Наименование показателей	Фактическое значение	Методы испытания
1	Вязкость кинематическая при 40 °C	50,6639	СТБ 1798-2007
2	Индекс вязкости, не менее	120	СТБ 1797-2007
3	Температура застывания, °С	-18	
4	Температура текучести, °С, не выше	-12	СТБ 1557-2015
5	Температура вспышки, определяемая в открытом тигле, °С, не ниже	187	ГОСТ 4333-87
6	Плотность при 15 °C, кг/м ³	830	СТБ ИСО 12185-2007

Емкость адсорбента оценивали, измеряя количество пропущенного через адсорбент масла до момента ухудшения цвета. Результаты эксперимента приведены на рисунке 2.

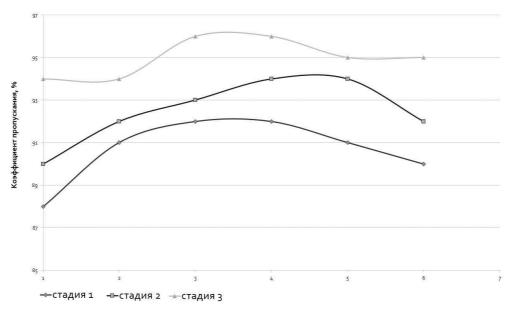


Рисунок 2. – Влияние регенерированного адсорбента на качество очистки

Возможность повторного использования цеолита определяли путем регенерации отработанного адсорбента прокаливанием в муфельной печи. Установлено, что после пяти циклов регенерации адсорбент сохранил свои свойства и обеспечивал получение белого масла с коэффициентом пропускания 99%.

Заключение

Получение белого масла адсорбционной очисткой масла гидрокрекинга является процессом, позволяющим увеличить степень передела углеводородного сырья и внести вклад в повышение эффективности нефтепереработки Республики Беларусь. Полученный продукт соответствует уровню свойств белых технических масел и может быть признан импортозамещающим для ряда направлений использования.

ЛИТЕРАТУРА

- 1. Суханов, В.П. Переработка нефти / В.П. Суханов. М. : Высш. школа, 1972.
- 2. Эрих, В.Н. Химия и технология нефти и газа / В.Н. Эрих, М.Г. Расин, М.Г. Рудин. М.: Химия, 1977.
- 3. Альперт, П.З. Основы проектирования химических установок / П.З. Альперт. М. : Высш. школа, 1989
- 4. Шашкин, П.И. Регенерация отработанных нефтяных масел / П.И. Шашкин. М.: Химия, 1970.
- 5. Технология переработки нефти. Производство нефтяных масел: учеб.-метод. компл. для студентов спец. 1-48 01 03 «Химическая технология природных энергоносителей и углеродных материалов» и слушателей УО «ПГУ» спец. 1-48 01 72 «Технология переработки нефти и газа» / С.В. Покровская. Новополоцк: ПГУ, 2008. 320 с.