МЕТОДЫ ДИСТАНЦИОННОГО КОНТРОЛЯ КАЧЕСТВА КОМПОЗИТОВ С ОРГАНИЧЕСКИМИ ЗАПОЛНИТЕЛЯМИ

##plugins.themes.bootstrap3.article.main##

A. Н. ЯГУБКИН
Ч. ЧЖИСЮЙ

Аннотация

Китайская строительная отрасль уже много лет использует Интернет вещей (IoT) для мониторинга строительных материалов и конструкций. Достижения китайской строительной отрасли в приложениях IoT могут быть использованы для изучения и мониторинга характеристик строительных материалов, в том числе зеленых зданий (энергоэффективных строительных материалов).


Цель исследования: изучение и оптимизация методов дистанционного контроля качества композитов с органическими заполнителями.


С помощью разработанной методики были получены следующие зависимости: зависимости напряжений внутри композитов с органическими заполнителями от внешних воздействий, полученные с помощью тонкопленочного датчика давления Keyes, зависимости деформаций внутри композитов с органическими заполнителями от внешних воздействий, полученные с помощью ультразвукового датчикa перемещений, зависимости влажности внутри композитов с органическими заполнителями от внешних воздействий, полученные с помощью датчика влажности, зависимости реологии (время схватывания цементного теста), полученные с помощью датчика Ph-sensor.

##plugins.themes.bootstrap3.article.details##

Как цитировать
ЯГУБКИН A. Н., & ЧЖИСЮЙ, Ч. (2022). МЕТОДЫ ДИСТАНЦИОННОГО КОНТРОЛЯ КАЧЕСТВА КОМПОЗИТОВ С ОРГАНИЧЕСКИМИ ЗАПОЛНИТЕЛЯМИ. Вестник Полоцкого государственного университета. Серия F. Строительство. Прикладные науки, (14), 78-81. https://doi.org/10.52928/2070-1683-2022-32-14-78-81

Библиографические ссылки

Xiu, J., Yazhi, J. & Huanchun, Z. (2001). Realization of frequency measurement of vibrating wire sensor by equal-precision frequency measurement method. Sensor Technology, 06, 53–55.

Dongliang, Z. (2018). Design and implementation of wifi-based IoT intelligent building control system. Nanjing University of Posts and Telecommunications, 19, 23–25.

Zhijun, G. (2014). Research on building safety monitoring technology based on wireless sensor network. Dalian University of Technology, 01, 122–128.

Xiaomeng, S., Xin, F. & Jing, Z. (2005). Sensor optimization method based on damage identifiability. Journal of Dalian University of Technology, 50 (02), 264–270.

Xu, W. (2005). “75·8” event of Shimantan Reservoir. China Flood Control and Drought Relief, (03), 27–37.

Liangming, M., Weisheng, W. & Shengsan, S. (2002). Application of vibrating wire sensor and automatic network measurement system in bridge safety monitoring system. Journal of Sensing Technology, (01), 73–76.

Taili, B., Ling, H., Caiyun, H. & Tieliu, D. (2017). Multifunctional intelligent detector based on vibrating wire sensor. Sensor Technology, (03), 60–62.

Jinkai, W. (2007). Research on IoT Node Information Collection and Credibility Measurement Method. University of Electronic Science and Technology of China, 08, 47–51.

Gutkowski, R., Brown, K., Shigidi, A. & Natterer, J. (2008). Laboratory tests of composite wood-concrete beams. Construction and Building Materials, (22), 1059–1066. DOI: 10.1016/j.conbuildmat.2007.03.013.

LeBorgne, M.R. & Gutkowski, R. (2010). Effects of various admixtures and shear keys in wood-concrete composite beams. Construction and Building Materials, (24), 1730–1738. DOI: 10.1016/j.conbuildmat.2010.02.016.

Kevern, T.T., Biddle, D. & Cao, Q. (2015). Effects of macrosynthetic fibers on pervious concrete properties. Journal of Materials in Civil Engineering, 27 (9), 06014031-1–06014031-6. DOI: 10.1061/(ASCE)MT.1943-5533.0001213.

Katkar, P.M., Patil, C.A., Khude, P.A., Jain, A.M. & Chougule, S.S. (2012). Coir-cement composite. Melliand International, 18 (2), 132–134. URL: https://www.researchgate.net/publication/287047716_Coir-cement_composite.

Kayali, O., Haque, M.N. & Zhu, B. (1999). Drying shrinkage of fibre-reinforced lightweight aggregate concrete containing fly ash. Cement and Concrete Research, (29), 1835–1840. DOI: 10.1016/S0008-8846(99)00179-9.

Bederina, M., Laidoudi, B., Goullieux, A., Khenfer, M.M., Bali, A. & Quéneudec, M. (2009). Effect of the treatment of wood shavings on the physico-mechanical characteristics of wood sand concretes. Construction and Building Materials, (23), 1311–1315. DOI: 10.1016/j.conbuildmat.2008.07.029.

Mungwa, M.S., Jullien, J.-F., Foudjet, A. & Hentges, G. (1999). Experimental study of a composite wood-concrete beam with the INSA-Hilti new flexible shear connector. Construction and Building Materials, (13), 371–382. DOI: 10.1016/S0950-0618(99)00034-3.

Olorunnisola, A.O. (2009). Effects of husk particle size and calcium chloride on strength and sorption properties of coconut husk-cement composites. Industrial crops and products, (29), 495–501. DOI: 10.1016/j.indcrop.2008.09.009.

Taoukil, D., El Bouardi, A., Sick, F., Mimet, A., Ezbakhe, H. & Ajzoul, T. (2013). Moisture content influence on the thermal conductivity and diffusivity of wood-concrete composite. Construction and Building Materials, (48), 104–115. DOI: 10.1016/j.conbuildmat.2013.06.067.

Fu, Q., Yan, L., Ning, T., Wang, B. & Kasal, B. (2020). Interfacial bond behavior between wood chip concrete and engineered timber glued by various adhesives. Construction and Building Materials, (238), 117743. DOI: 10.1016/j.conbuildmat.2019.117743.

Khorami, M. & Ganjian, E. (2011). Comparing flexural behaviour of fibre-cement composites reinforced bagasse: Wheat and eucalyptus. Construction and Building Materials, (25), 3661–3667. DOI: 10.1016/j.conbuildmat.2011.03.052.

Salem, T., Fois, M., Omikrine-Metalssi, O., Manuel, R. & Fen-Chong, T. (2020). Thermal and mechanical performances of cement-based mortars reinforced with vegetable synthetic sponge wastes and silica fume. Construction and Building Materials, (264), 120213. DOI: 10.1016/j.conbuildmat.2020.120213.

Lacoste, C., Bergeret, A., Corn, S. & Lacroix, P. (2018). Sodium alginate adhesives as binders in wood fibers/textile waste fibers biocomposites for building insulation. Carbohydrate Polymers, (184), 1–8. DOI: 10.1016/j.carbpol.2017.12.019.

Subbotina, N., Gorlenko, N., Sarkisov, Y., Naumova, L. & Minakova, T. (2016). Control of Structurization Processes in Wood-Cement Systems at Fixed pH. AIP Conference Proceedings, (1698), 060003-1–060003-6. DOI: 10.1063/1.4937858.

Yagubkin, A.N. (2017). Innovatsionnyi konstruktsionno-teploizolyatsionnyi arbolit s zadannymi svoistvami. BST: byulleten' stroitel'noi tekhniki, 10 (998), 42–43. URL: http://bstmag.ru/article?id=1506.

Bozylev, V.V. & Yagubkin, A.N. (2017). Innovatsionnyi arbolit s zadannymi svoistvami. Problemy sovremennogo betona i zhelezobetona: sb. nauch. tr., (9), 96–112. DOI: 10.23746/2017-9-7.

Bozylev, V.V. & Yagubkin, A.N. (2011). Izuchenie mekhanizma deistviya dobavki Arbel na protsessy nabora prochnosti tsementnoi sostavlyayushchei arbolita. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya F, Stroitel'stvo. Prikladnye nauki, (16), 89–96. URL: https://elib.psu.by/bitstream/123456789/711/5/89-96.pdf.

Bozylev, V.V. & Yagubkin, A.N. (2009). K voprosu razrabotki metodiki ekspress-analiza otsenki vliyaniya dobavok na prochnost' arbolita. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya F, Stroitel'stvo. Prikladnye nauki, (6), 71–76. URL: https://elib.psu.by/bitstream/123456789/2243/5/71-76.pdf.