RESEARCH AND APPLICATION OF WOOD-CONCRETE IN WORLD PRACTICE: AN OVERVIEW

Main Article Content

A. YAGUBKIN
Y.

Abstract

Wood-concrete products are used for the construction of exterior walls and partitions, as well as heat and sound insulation material in buildings for various purposes. They were spread in such countries as Austria, Australia, Belarus, Brazil, Canada, China, Great Britain, Germany, Holland, India, Japan, Switzerland, Russia, USA, France, etc. Wood concrete products have high strength, low thermal conductivity, high heat capacity, are not subject to rotting, fungal and microorganism damage, and are environmentally friendly. In Polotsk State University (Belarus), a new generation of wood-concrete has been developed. The technology will make it possible to obtain a material with directional filler placement and desired properties. Arbel modifier additive allows to reduce the operating humidity and thermal conductivity of the material. The method of selection of additives allows you to quickly select the composition of the additive and wood-concrete.

Article Details

How to Cite
YAGUBKIN, A., & Y. (2021). RESEARCH AND APPLICATION OF WOOD-CONCRETE IN WORLD PRACTICE: AN OVERVIEW. Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences, (16), 139-141. Retrieved from https://journals.psu.by/constructions/article/view/1170

References

Gutkowski, R., Brown, K., Shigidi, A., & Natterer, J. (2008). Laboratory tests of composite wood–concrete beams. Construction and Building Materials, 22, 1059–1066. DOI: 10.1016/j.conbuildmat.2007.03.013.

LeBorgne, M.R., & Gutkowski, R. (2010). Effects of various admixtures and shear keys in wood–concrete composite beams. Construction and Building Materials, 24, 1730–1738. DOI: 10.1016/j.conbuildmat.2010.02.016.

Kevern, T.T., Biddle, D., & Cao Q. (2015). Effects of macrosynthetic fibers on pervious concrete properties. Journal of Materials in Civil Engineering, 27(9), 06014031-1 - 06014031-6. DOI: 10.1061/(ASCE)MT.1943-5533.0001213.

Koohestani, B., Koubaa, A., Belem, T., Bussière, B., & Bouzahzah H. (2016). Experimental investigation of mechanical and micro-structural properties of cemented paste backfill containing maple-wood filler. Construction and Building Materials, 121, 222–228. DOI: 10.1016/j.conbuildmat.2016.05.118.

Okino, E.Y.A., de Souza, M.R., Santana, M.A.E., da S. Alves, M.V., de Sousa, M.E., & Teixeira, D.E. (2004). Cement-bonded wood particleboard with a mixture of eucalypt and rubberwood. Cement & Concrete Composites, 26, 729–734. DOI: 10.1016/S0958-9465(03)00061-1.

Quiroga, A., Marzocchi, V., & Rintoul I. (2016). Influence of wood treatments on mechanical properties of wood cement composites and of Populus Euroamericana wood fibers. Composites Part B: Engineering, 84, 25–32. DOI: 10.1016/j.compositesb.2015.08.069.

Katkar, P.M., Patil, C.A., Khude, P.A., Jain, A.M., & Chougule S.S. (2012). Coir-cement composite. Melliand International, 18(2), 132–134. https://www.researchgate.net/publication/287047716_Coir-cement_composite.

Kayali, O., Haque, M.N., & Zhu, B. (1999). Drying shrinkage of fibre-reinforced lightweight aggregate concrete containing fly ash. Cement and Concrete Research, 29, 1835–1840. DOI: 10.1016/S0008-8846(99)00179-9.

Kammoun, Z., & Trabelsi, A. (2013). Development of lightweight concrete using prickly pear fibers. Construction and Building Materials, 48, 104–115. DOI: 10.1016/j.conbuildmat.2019.03.167.

Bederina, M., Laidoudi, B., Goullieux, A., Khenfer, M.M., Bali, A., & Quéneudec, M. (2009). Effect of the treatment of wood shavings on the physico-mechanical characteristics of wood sand concretes. Construction and Building Materials, 23, 1311–1315. DOI: 10.1016/j.conbuildmat.2008.07.029.

Mungwa, M.S., Jullien, J.-F., Foudjet, A., & Hentges, G. (1999). Experimental study of a composite wood-concrete beam with the INSA-Hilti new flexible shear connector. Construction and Building Materials, 13, 371–382. DOI: 10.1016/S0950-0618(99)00034-3.

Olorunnisola, A.O. (2009). Effects of husk particle size and calcium chloride on strength and sorption properties of coconut husk–cement composites. Industrial crops and products, 29, 495–501. DOI: 10.1016/j.indcrop.2008.09.009.

Taoukil, D., El Bouardi, A., Sick, F., Mimet, A., Ezbakhe, H., & Ajzoul, T. (2013). Moisture content influence on the thermal conductivity and diffusivity of wood–concrete composite. Construction and Building Materials, 48, 104–115. DOI: 10.1016/j.conbuildmat.2013.06.067.

Fu, Q., Yan, L., Ning, T., Wang, B., & Kasal, B. (2020). Interfacial bond behavior between wood chip concrete and engineered timber glued by various adhesives. Construction and Building Materials, 238, 117743. DOI: 10.1016/j.conbuildmat.2019.117743.

Khorami, M., & Ganjian, E. (2011). Comparing flexural behaviour of fibre–cement composites reinforced bagasse: Wheat and eucalyptus. Construction and Building Materials, 25, 3661–3667. DOI: 10.1016/j.conbuildmat.2011.03.052.

Salem, T., Fois, M., Omikrine-Metalssi, O., Manuel, R., & Fen-Chong T. (2020). Thermal and mechanical performances of cement-based mortars reinforced with vegetable synthetic sponge wastes and silica fume. Construction and Building Materials, 264, 120213. DOI: 10.1016/j.conbuildmat.2020.120213.

Lacoste, C., Bergeret, A., Corn, S., & Lacroix, P. (2018). Sodium alginate adhesives as binders in wood fibers/textile waste fibers biocomposites for building insulation. Carbohydrate Polymers, 184, 1–8. DOI: 10.1016/j.carbpol.2017.12.019.

Subbotina, N., Gorlenko, N., Sarkisov, Y., Naumova, L., & Minakova, T. (2016). Control of Structurization Processes in Wood-Cement Systems at Fixed pH. AIP Conference Proceedings, 1698, 060003-1 - 060003-6. DOI: 10.1063/1.4937858.

Yagubkin, A.N. (2017). Innovatsionnyi konstruktsionno-teploizolyatsionnyi arbolit s zadannymi svoistvami. BST: byulleten' stroitel'noi tekhniki, 10 (998), 42–43. http://bstmag.ru/article?id=1506.

Bozylev, V.V., & Yagubkin, A.N. (2017). Innovatsionnyi arbolit s zadannymi svoistvami. Problemy sovremennogo betona i zhe-lezobetona : sb. nauch. tr., 9, 96–112. DOI: 10.23746/2017-9-7.

Bozylev, V.V., & Yagubkin, A.N. (2011). Izuchenie mekhanizma deistviya dobavki Arbel na protsessy nabora prochnosti tsementnoi sostavlyayushchei arbolita. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya F, Stroitel'stvo. Prikladnye nauki, 16, 89–96. http://elib.psu.by:8080/bitstream/123456789/711/1/Bozylev_2011-16-p89.pdf.

Bozylev, V.V., & Yagubkin, A.N. (2009). K voprosu razrabotki metodiki ekspress-analiza otsenki vliyaniya dobavok na prochnost' arbolita. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya F, Stroitel'stvo. Prikladnye nauki, 6, 71–76. https://elib.psu.by/bitstream/123456789/2243/1/Бозылев_2009-6.pdf.