INFLUENCE OF TEMPERATURE ON THE THERMO-HUMIDITY CONDITIONS OF WALL MATERIALS

Main Article Content

A. YAGUBKIN
D. SHABANOV
Y. JINBIN

Abstract

The construction of energy efficient housing is a strategically important scientific, technical, economic, social and political trend. The goal of the work is to show the influence of temperature on the thermo-humidity conditions of various wall materials. To achieve this goal, a testing complex was developed at Polotsk State University. The testing complex consists of a laboratory installation with the ability to change samples of wall materials, temperature and humidity sensors, an information input-output interface, software. The experiment showed comparable heat retention results for mineral wool, expanded polystyrene, wood-concrete and foil sample. The results obtained indicate that the proposed technology can be used both in existing buildings and in buildings under construction.

Article Details

How to Cite
YAGUBKIN, A., SHABANOV, D., & JINBIN, Y. (2021). INFLUENCE OF TEMPERATURE ON THE THERMO-HUMIDITY CONDITIONS OF WALL MATERIALS. Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences, (16), 142-145. Retrieved from https://journals.psu.by/constructions/article/view/1171
Author Biography

D. SHABANOV, Polotsk State University

канд. техн. наук

References

Salem, T., Fois, M., Omikrine-Metalssi, O., Manuel, R., & Fen-Chong T. (2020). Thermal and mechanical performances of cement-based mortars reinforced with vegetable synthetic sponge wastes and silica fume. Construction and Building Materials, 264, 120213. DOI: 10.1016/j.conbuildmat.2020.120213.

Fu, Q., Yan, L., Ning, T., Wang, B., & Kasal, B. (2020). Interfacial bond behavior between wood chip concrete and engineered timber glued by various adhesives. Construction and Building Materials, 238, 117743. DOI: 10.1016/j.conbuildmat.2019.117743.

Lacoste, C., Bergeret, A., Corn, S., & Lacroix, P. (2018). Sodium alginate adhesives as binders in wood fibers/textile waste fibers biocomposites for building insulation. Carbohydrate Polymers, 184, 1–8. DOI: 10.1016/j.carbpol.2017.12.019.

Subbotina, N., Gorlenko, N., Sarkisov, Y., Naumova, L., & Minakova, T. (2016). Control of Structurization Processes in Wood-Cement Systems at Fixed pH. AIP Conference Proceedings, 1698, 060003-1 - 060003-6. DOI: 10.1063/1.4937858.

Koohestani, B., Koubaa, A., Belem, T., Bussière, B., & Bouzahzah H. (2016). Experimental investigation of mechanical and micro-structural properties of cemented paste backfill containing maple-wood filler. Construction and Building Materials, 121, 222–228. DOI: 10.1016/j.conbuildmat.2016.05.118.

Kevern, T.T., Biddle, D., & Cao Q. (2015). Effects of macrosynthetic fibers on pervious concrete properties. Journal of Materials in Civil Engineering, 27(9), 06014031-1 - 06014031-6. DOI: 10.1061/(ASCE)MT.1943-5533.0001213.

Kammoun, Z., & Trabelsi, A. (2013). Development of lightweight concrete using prickly pear fibers. Construction and Building Materials, 48, 104–115. DOI: 10.1016/j.conbuildmat.2019.03.167.

Taoukil, D., El Bouardi, A., Sick, F., Mimet, A., Ezbakhe, H., & Ajzoul, T. (2013). Moisture content influence on the thermal conductivity and diffusivity of wood–concrete composite. Construction and Building Materials, 48, 104–115. DOI: 10.1016/j.conbuildmat.2013.06.067.

Khorami, M., & Ganjian, E. (2011). Comparing flexural behaviour of fibre–cement composites reinforced bagasse: Wheat and euca-lyptus. Construction and Building Materials, 25, 3661–3667. DOI: 10.1016/j.conbuildmat.2011.03.052.

Gutkowski, R., Brown, K., Shigidi, A., & Natterer, J. (2008). Laboratory tests of composite wood–concrete beams. Construction and Building Materials, 22, 1059–1066. DOI: 10.1016/j.conbuildmat.2007.03.013.

LeBorgne, M.R., & Gutkowski, R. (2010). Effects of various admixtures and shear keys in wood–concrete composite beams. Construction and Building Materials, 24, 1730–1738. DOI: 10.1016/j.conbuildmat.2010.02.016.

Okino, E.Y.A., de Souza, M.R., Santana, M.A.E., da S. Alves, M.V., de Sousa, M.E., & Teixeira, D.E. (2004). Cement-bonded wood particleboard with a mixture of eucalypt and rubberwood. Cement & Concrete Composites, 26, 729–734. DOI: 10.1016/S0958-9465(03)00061-1.

Quiroga, A., Marzocchi, V., & Rintoul I. (2016). Influence of wood treatments on mechanical properties of wood cement compo-sites and of Populus Euroamericana wood fibers. Composites Part B: Engineering, 84, 25–32. DOI: 10.1016/j.compositesb.2015.08.069.

Katkar, P.M., Patil, C.A., Khude, P.A., Jain, A.M., & Chougule S.S. (2012). Coir-cement composite. Melliand International, 18(2), 132–134. https://www.researchgate.net/publication/287047716_Coir-cement_composite.

Kayali, O., Haque, M.N., & Zhu, B. (1999). Drying shrinkage of fibre-reinforced lightweight aggregate concrete containing fly ash. Cement and Concrete Research, 29, 1835–1840. DOI: 10.1016/S0008-8846(99)00179-9.

Bederina, M., Laidoudi, B., Goullieux, A., Khenfer, M.M., Bali, A., & Quéneudec, M. (2009). Effect of the treatment of wood shavings on the physico-mechanical characteristics of wood sand concretes. Construction and Building Materials, 23, 1311–1315. DOI: 10.1016/j.conbuildmat.2008.07.029.

Mungwa, M.S., Jullien, J.-F., Foudjet, A., & Hentges, G. (1999). Experimental study of a composite wood-concrete beam with the INSA-Hilti new flexible shear connector. Construction and Building Materials, 13, 371–382. DOI: 10.1016/S0950-0618(99)00034-3.

Olorunnisola, A.O. (2009). Effects of husk particle size and calcium chloride on strength and sorption properties of coconut husk–cement composites. Industrial crops and products, 29, 495–501. DOI: 10.1016/j.indcrop.2008.09.009.

Shabanov, D.N., Bryantsev, E.G. & Krupenchik, I.V. (2020). Rekuperatsiya v ograzhdayushchikh konstruktsiyakh. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya F, Stroitel'stvo. Prikladnye nauki, 8, 76–79. https://elib.psu.by/bitstream/123456/25837/1/ШабановБрянцевКрупенчик_2020-8.pdf.