RELATIONSHIP OF THE STRESS-INTENSITY COEFFICIENT AT NORMAL SEPARATION AND THE STRENGTH IN TENSION

Main Article Content

E. SADOVSKAYA
S. LEONOVICH

Abstract

This article explores the practical use of the Leonov-Panasyuk model for calculating the stress intensity factor for nanofibre-reinforced concrete using the value of tensile strength in bending of a sample beam of 100×100×400 mm. The study was carried out on different nanoconcrete matrices with three types of fiber fibers. Comparison of the obtained values showed a high degree of convergence with the values of the stress intensity factor obtained from the strength for normal separation in cubes with a notch, from the energy consumption during bending of a beam with a notch. The results confirm that the critical stress intensity factor can be attributed to stable indicators of the crack resistance of nanofiber-reinforced concrete.

Article Details

How to Cite
SADOVSKAYA, E., & LEONOVICH, S. (2022). RELATIONSHIP OF THE STRESS-INTENSITY COEFFICIENT AT NORMAL SEPARATION AND THE STRENGTH IN TENSION. Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences, (8), 27-31. https://doi.org/10.52928/2070-1683-2022-31-8-27-31
Author Biography

S. LEONOVICH, Belarusian National Technical University, Minsk; Qingdao University, China

д-р техн. наук, проф.

References

Koleda, E.A. & Leonovich, S.N. (2017). Kharakteristiki treshchinostoikosti fibrobetona kak opredelyayushchii faktor kachestva. In B.M. Khrustalev (Eds.) & S.N. Leonovich (Eds.) Tekhnologiya stroitel'stva i rekonstruktsii: sb. dokl. Mezhdunar. nauch.-tekhn. konf. (282–287). Minsk: Belorus. nats. tekhn. un-t. (In Russ.).

Zhdanok, S.A., Polonina, E.N., Sadovskaya, E.A. & Leonovich, S.N. (2021). Fracture toughness of carbon nanotubes modified cement based materials. Vestnik of Brest State Technical University, (3), 48–53. DOI: 10.36773/1818-1112-2021-126-3-48-53.

Koleda, E.A., Leonovich, S.N., Zhdanok, S.A., Polonina, E.N. & Budrevich, N.A. (2018). Fiziko-mekhanicheskie svoistva betona srednei prochnosti modifitsirovannogo uglerodnoi nanostrukturirovannoi dobavkoi [Physical and mechanical properties of medium-strength concrete modified with a carbon nanostructured additive]. Vestn. Povolzhskogo gos. tekhnol. un-ta. Ser. Materialy. Konstruktsii. Tekhnologii [Vestnik of Volga State University of Technology. Ser. Materials. Constructions. Technologies], (2), 24–34. (In Russ., abstr. in Engl.).

Polonina, E.N., Leonovich, S.N. & Koleda, E.A. (2018). Fiziko-mekhanicheskie kharakteristiki nanobetona [Physical and mechanical properties of nano concrete]. Vestn. Inzhenernoi shk. Dal'nevostochnogo federal'nogo un-ta [FEFU: School of Engineering Bulletin], (4), 100–111. (In Russ.). DOI: 10.5281/zenodo.2008672.

Polonina, E.N., Leonovich, S.N., Khroustalev, B.M., Sadovskaya, E.A. & Budrevich, N.A. (2021). Cement-Based Materials Modified with Nanoscale Additives. Science and Technique, 20 (3), 189–194. DOI: 10.21122/2227-1031-2021-20-3-189-194.

Zhdanok, S.A., Khrustalev, B.M., Batyanovskii, E.I. & Leonovich, S.N. (2009). Nanotekhnologii v stroitel'nom materialovedenii: real'nost' i perspektivy. Vestn. Belorus. nats. tekhn. un-ta, (3), 5–23. (In Russ.).

Sadovskaya, E.A., Leonovich, S.N., Zhdanok, S.A. & Polonina, E.N. (2020). Prochnost' nanofibrobetona na rastyazhenie. Inzhenerno-fizicheskii zhurnal [J. of Engineering Physics and Thermophysics], 93 (4), 1051–1055. (In Russ.).

Koleda, E.A., Leonovich, S.N. & Zhdanok, S.A. (2018). Rezul'taty ispytanii nanofibrobetona na rastyazhenie s kompleksnym fibrovym armirovaniem [Results of tension testing of nanofiber concrete with integrated fiber reinforcement]. Vestn. Povolzhskogo gos. tekhnol. un-ta. Ser. Materialy. Konstruktsii. Tekhnologii [Vestnik of Volga State University of Technology. Ser. Materials. Con-structions. Technologies], (2), 16–23. (In Russ., abstr. in Engl.).

Panasyuk, V.V., Berednitskii, L.T. & Chubrikov, V.M. (1981). Otsenka treshchinostoikosti tsementnogo betona po vyazkosti razrusheniya. Beton i zhelezobeton, (2), 19–20. (In Russ.).

Yagust, V.I. (1981). Otsenka soprotivleniya razvitiyu treshchin v betonnykh konstruktsiyakh s pomoshch'yu modeli M.Ya. Leo-nova-V.V. Panasyuka-D. Dagdeila. Ekspressinformatsiya. Moscow: TsITI po grazhdanskomu str-vu i arkhitekture. (In Russ.).

Sadovskaya, E.A., Leonovich, S.N. & Budrevich, N.A. (2021). Mnogoparametrichnaya metodika otsenki pokazatelei kachestva nanofibrobetona dlya stroitel'noi ploshchadki [A multi-parametric method for evaluating the quality indicators of nano-fiber con-crete for a construction site]. Beton i zhelezobeton, (4), 20–28. (In Russ., abstr. in Engl.).

Sadovskaya, E.A., Polonina, E.N., Leonovich, S.N. & Zhdanok, S.A. (2020). Tensile Strength of Nanofibrous Concrete. J. of Engi-neering Physics and Thermophysics, 93 (4), 1015–1019. DOI: 10.1007/s10891-020-02202-8.

Sadovskaya, E.A., Polonina, E.N., Leonovich, S.N., Zhdanok, S.A. & Potapov, V.V. (2021). Kriticheskii koeffitsient intensivnosti napryazhenii pri poperechnom sdvige dlya nanofibrobetona [Critical stress intensity coefficient at transverse shear for nanofibrobeton]. Stroitel'nye materialy [Construction Materials], (9), 41–47. DOI: 10.31659/0585-430X-2021-795-9-41-46. (In Russ., abstr. in Engl.).

Trapeznikov, L.P. (1986). Temperaturnaya treshchinostoikost' massivnykh betonnykh sooruzhenii. Moscow: Energoatomizdat. (In Russ.).

Zhang, P., Yang, Y., Wang, J., Jiao, M. & Ling, Y. (2020). Fracture Models and Effect of Fibers on Fracture Properties of Cementi-tious Composites – A Review. Materials, (13). DOI: 10.3390/ma13235495.

Hamad, A.J. & Sldozian, R.J.A. (2019). Flexural and flexural toughness of fiber reinforced concrete – American standard specifica-tions review. GRD J. for Engineering, 4 (3), 5–13.

Most read articles by the same author(s)