DATA PROCESSING SEQUENCE FOR GPR INVESTIGATION OF ANTHROPOGENIC SEDIMENTS IN URBANIZED AREAS
Article Sidebar
Main Article Content
Abstract
The article presents a historical overview of the ground penetrating research (GPR) development. Although the theoretical foundations of the GPR method was formulated many years ago, it has been possible to practically implement this method only in recent years. Nowadays there are difficulties with GPR data analysis because the change in dielectric permittivity depends on a lot of factors. The aim of this study was to develop an effective GPR data processing sequence and interpretation of GPR profiles obtained on the basis of geophysical surveys in urbanized areas. The survey was conducted on the right bank of the Dnieper River in Mogilev (the Republic of Belarus), where previously residential quarters were located (according to architectural data). The developed GPR data processing sequence is based on a combination of the following methods: amplification of individual signals, the method of subtracting the average, a bandpass filter. The proposed data processing sequence is based on dielectric permeability. Information about the shape and depth of the objects buried in the cultural layer was obtained by using the proposed sequence.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Y. MASKALKOVA, Belarusian-Russian University, Mogilev
канд. техн. наук, доц.
References
Vladov, M.L. & Starovoitov, A.V. (2004). Vvedenie v georadiolokatsiyu. Moscow: MGU. (In Russ.).
Murín, I., Neumann, M., Brady, C., Batora, J., Capo, M. & Drozd, D. (2022). Application of magnetometry, georadar (GPR) and geoelectrical methods in archaeo-geophysical investigation of a Napoleonic battlefield with fortification at Pressburg (Bratislava, Slovakia). J. of Applied Geophysics, 196. 12. DOI: 10.1016/j.jappgeo.2021.104493.
Starovoitov, A.V. Interpretatsiya georadiolokatsionnykh dannykh. Moscow: MGU. (In Russ.).
Bondar, K.M., Bobrovs'kii, T.A. & Tsyupa, I.V. (2016). Vivchennya efektivnostі georadarnikh doslіdzhen' na teritorії Natsіonal'nogo zapovіdnika «Sofіya Kiїvs'ka» dlya virіshennya arkheologіchnikh zavdan' [Efficiency of GPR survey for arhaelogical targets de-tection in the national concervation area of “St. Sophia of Kyiv”]. Geoіnformatika, (4), 75–82. (In Ukr., abstr. in Engl.).
Capozzoli, L., Giampaolo, V., De Martino, G., Perciante, F., Lapenna, V. & Rizzo, E. (2022). ERT and GPR Prospecting Applied to Unsatu-rated and Subwater Analogue Archaeological Site in a Full Scale Laboratory. Applied Sciences, 12 (3), 26. DOI: 10.3390/app12031126.
Ibraheem, I.M., Bergers, R. & Tezkan, B. (2021). Archaeogeophysical exploration in Neuss-Norf, Germany using electrical resistivity tomography and magnetic data. Near Surface Geophysics, 19 (1), 603–623. DOI: 10.1002/nsg.12172.
Anishchenko, E.K., Antonovich, Z.V., Vrublevskii, V.V., Kotik, T.N., Leont'eva, T.E., Lipskaya, L.M., … Yatskevich, D.L. (2014). Mogilevskaya guberniya: gosudarstvennye, religioznye i obshchestvennye uchrezhdeniya (1772–1917). Minsk: Belarus. (In Russ.).
Kurkov, I.N. & Pushkin, I.A. (2008). Mogilevshchina. Legendy, sobytiya, lyudi. Minsk: Mediafakt. (In Russ.).
Galkovskii, T.V. & Aronov, G.A. (2020). Kompleksnoe primenenie georadarnoi i magnitnoi s"emki v inzhenernykh izyskaniyakh na ob"ektakh sotsial'noi infrastruktury i v arkheologicheskikh issledovaniyakh [Complex application of georadar and magnetic survey in engineered surveys at objects of social infrastructure and arkheological studies]. In M.S. Sudakova (Eds.) & M.R. Sadurtdinov (Eds.) Inzhenernaya seismorazvedka i seismologiya-2020. Georadar-2020. Teper' vmeste: sb. tez. nauch.-prakt. konf. (105–109). Moscow: Izd. dom “Akademiya Estestvoznaniya”. (In Russ., abstr. in Engl.).
Noskevich, V.V., Fedorova, N.V., Bebnev, A.S., Vdovin, A.G. & Mekhonoshina, T.L. (2014). Rezul'taty issledovaniya geofizicheskimi metodami arkheologicheskogo pamyatnika bronzovogo veka gorodishche Andreevskoe (Yuzhnyi Ural) [Resalts of the geophysical research of bronze age archaeological monuments Andreevskoe (Southern Ural mountains)]. Ural'skii geofizicheskii vestnik, (1), 72–80. (In Russ., abstr. in Engl.).
Pilecki, Z., Krawiec, K., Pilecka, E., Kotyrba, A., Tomecka-Suchon, S. & Latka, T. (2021). Identification of buried historical mineshaft using ground-penetrating radar. Engineering Geology, 294 (2), 13. DOI: 10.1016/j.enggeo.2021.106400.
Bondar, K.M., Khomenko, R.V., Chernov, A.P. & Kuksa, N.V. (2020). Rezul'taty georadarnogo obsledovaniya Il'inskoi tserkvi – usypal'nitsy Bogdana Khmel'nitskogo v Subbotove [Results of the ground penetrating radar survey in the church of St. Elias – Bohdan Khmelnytsky burial vault in Subotiv]. Geofizicheskii zhurnal, 42 (3), 173–194. (In Russ., abstr. in Engl.). DOI: 10.24028/gzh.0203-3100.v42i3.2020.204709.
Khomyakov, V.G. & Vasilenko, E.A. (2015). Razvitie bazy turistsko-ekskursionnoi deyatel'nosti v Belarusi na rubezhe XX–XXI stoletii [Development of tourism in Belarus at the turn of the XX–XXI centuries]. Vesn. Magіleuskaga dzyarzh. un-ta іmya A.A. Kulyashova. Ser. D, Ekanomіka, satsyyalogіya, prava [Mogilev State A. Kuleshov Bulletin. Ser. D, Economics. Sociology. Law], (1), 56–62. (In Russ., abstr. in Engl.).
Lukin, A.S. (2007). Vvedenie v tsifrovuyu obrabotku signalov (matematicheskie osnovy). Moscow: MSU. (In Russ.).
Pavlova, V.Yu., Solov'ev, V.A. & Kokoreva, A.S. (2021). Opyt raboty s priborom georadar «OKO-250» dlya utochneniya gruntovykh uslovii na ozernovskoi kose Kultuchnogo ozera (gorod Petropavlovsk-Kamchatskii) [Features of operating the instrument georadar "OKO-250" for refining the ground conditions on the ozernovskaya kosa Kultuсhnogo lake (Petropavlovsk-Kamchatsky city)]. Vestn. KRAUNTs. Fiz.-mat. nauki [Bulletin KRASEC. Physical and Mathematical Sciences], 35 (2), 110–119. (In Russ., abstr. in Engl.). DOI: 10.26117/2079-6641-2021-35-2-110-119.
Kul'baev, B.B., Khomyakov, V.A., Zhamek, N.A. & Shokbarov, A.M. (2020). Effektivnost' tekhnicheskogo obsledovaniya s primeneniem georadara. Vestn. AO "KazNIISA", (3), 50–61. (In Russ.). 17. Sergienko, A.B. (2003). Tsifrovaya obrabotka signalov. St. Petersburg: Piter. (In Russ.).
Burschil, T., Buness, H., Tanner, D.C., Wielandt-Schuster, U., Ellwanger, D. & Gabriel, G. (2018). High-resolution reflection seismics reveal the structure and the evolution of the Quaternary glacial Tannwald Basin. Near Surface Geophysics, 16 (6), 593–610. DOI: 10.1002/nsg.12011. 19. Finkel'shtein, M.I., Kutev, V.A. & Zolotarev, V.P. (1986). Primenenie radiolokatsionnogo podpoverkhnostnogo zondirovaniya v inzhenernoi geologii. Moscow: Nedra. (In Russ.).
Most read articles by the same author(s)
- V. RZHEVUTSKAYA, Y. MASKALKOVA, THE RELATIVE TOTAL SHRINKAGE STRAIN OF EXPANDED CLAY CONCRETE, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 16 (2021)