CONSIDERATION OF THE PHYSICAL NONLINEARITY OF ORTHOTROPIC PLATE IN THE STATIC CALCULATION OF AN INFINITE REGULAR SYSTEM OF PLATES ON AN ELASTIC LAYER
Article Sidebar
Main Article Content
Abstract
An infinite regular system of orthotropic plates on an elastic layer rigidly connected to a non-deformable base is considered. Nonlinear calculation of an infinite regular system of plates on an isotropic basis is performed by the variational-difference method (VRM), which is characterized by the replacement of differential equations by finite-difference approximations. The numerical solution of the resulting system of equations is performed using an iterative algorithm.
When finding the variable stiffness of the plate on the elastic layer, the "stiffness – curvature" dependence on the Straw in the directions of the axes of inertia is used. According to the found cylindrical bending stiffness from the ratio of S.P. Timo-shenko, the torsion stiffness of the plate is determined for each iteration. The energy of deformation of the elastic base is replaced by the work of reactive pressures in the contact zone of the structure on the basis of the law of conservation of energy.
The analysis of the results of elastic and nonlinear calculations (3rd iteration) was carried out for the values of the orthotropic plate sediment and contact stresses in the zone of interaction of the plate with the elastic base.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
O. KOZUNOVA, Belarusian State University of Transport, Gomel
канд. техн. наук, доц.
References
Aleksandrov, A.V. & Potapov, V.D. (1990). Osnovy teorii uprugosti i plastichnosti. Moscow: Vyssh. shk. (In Russ.).
Rzhanitsyn, R.A. Stroitel'naya mekhanika. Moscow: Vyssh. shk. (In Russ.).
Bosakov, S.V. & Semenyuk, Y.D. (2000). Raschet sistemy perekrestnykh balok na dvukhsloinom osnovanii. Vestn. BGTU. Ser. Str-vo i arkhitektura, (1), 14–16. (In Russ.). https://rep.bstu.by/handle/data/5742.
Bosakov, S.V. & Semenyuk, S.D. (2001). Raschet zhelezobetonnykh prostranstvennykh fundamentov, kak sistemy perekrestnykh balok, na uprugom osnovanii s uchetom polzuchesti betona. Vestn. BGTU. Ser. Str-vo i arkhitektura, (1), 13–16. (In Russ.). https://rep.bstu.by/handle/data/15979.
Bosakov, S.V. (2002). Staticheskie raschety plit na uprugom osnovanii. Minsk: BNTU. (In Russ.).
Semenyuk, S.D. (2003). Zhelezobetonnye i prostranstvennye fundamenty zhilykh i grazhdanskikh zdanii na neravnomerno deformiro-vannom osnovanii. Mogilev: Belorus.-Ros. un-t. (In Russ.).
Bosakov, S.V. (2006). Metod Rittsa v kontaktnykh zadachakh teorii uprugosti. Brest: BrGTU. (In Russ.).
Bosakov, S.V. & Kozunova, O.V. (2009). Variatsionno-raznostnyi podkhod v reshenii kontaktnoi zadachi dlya nelineino uprugogo neodnorodnogo osnovaniya. Ploskaya deformatsiya. Teoriya rascheta (Chast' 1). Vestn. BNTU, (1), 5−13. (In Russ.). https://rep.bntu.by/handle/data/2215.
Guenfoud, S., Bosakov, S.V. & Laefer, D.F. (2010). A Ritz's method based solution for the contact problem of a deformable rectangular plate on an elastic quarter-space. International Journal of Solids and Structures, 47 (14–15), 1822–1829. DOI: 10.1016/j.ijsolstr.2010.03.014.
Gorbunov-Posadov, M.I., Malikova, T.A. & Solomin, V.I. (1984). Raschet konstruktsii na uprugom osnovanii. Moscow: Stroiizdat. (In Russ.).
Semenyuk, S.D. (2003). Zhelezobetonnye prostranstvennye fundamenty zhilykh i grazhdanskikh zdanii na neravnomerno-deformiruemom osnovanii. Mogilev: Belorus.-Ros. un-t. (In Russ.).
Klepikov, S.N. (1967). Raschet konstruktsii na uprugom osnovanii. Kiev: Budivelnik. (In Russ.).
Kozunova, O.V. & Sirosh, K.A. (2021). Raschet beskonechnoi sistemy perekrestnykh balok na uprugom osnovanii variatsionno-raznostnym metodom [Calculation of an infinite system of cross beams on an elastic base by the variation-difference method]. Vestn. Polots. gos. un-ta. Ser. F, Str-vo. Prikladnye nauki [Vestnik of Polotsk State University. Part F, Construction. Applied Sciences], (16), 65–71. (In Russ., abstr. in Engl.).
Kozunova, O.V. & Sirosh, K.A. (2021). Nelineinyi raschet regulyarnoi sistemy zhelezobetonnykh balok na uprugom osnovanii pri deistvii simmetrichnoi nagruzki [Nonlinear calculation of a regular system of reinforced concrete beams on an elastic base under a symmetrical load]. In Mekhanika. Issledovaniya i innovatsii: mezhdunar. sb. nauch. tr. [Mechanics. Researches and Innovations] (97–104). Gomel': BelGUT. (In Russ., abstr. in Engl.). http://elib.bsut.by/bitstream/handle/123456789/6763/97-104.pdf?sequence=1&isAllowed=y.
Kozunova, O.V. (2022). Sovershenstvovanie metodiki rascheta gibkikh ortotropnykh plit na uprugom osnovanii. Chast' 1. Teoriya rascheta [Improvement of Calculation Technique for Flexible Orthotropic Plates on Elastic Base. Part 1. Calculation Theory]. Nauka i tekhnika [Science & Technique], 21 (3), 211–221. (In Russ., abstr. in Engl.). DOI: 10.21122/2227-1031-2022-21-3-211-221.
Lekhnitskii, S.G. (1957). Anizotropnye plastinki. Moscow: Gos. izd-vo tehniko-teor. lit. (In Russ.).
Timoshenko, S.P. & Voynovsky-Kriger, S. (1963). Plastiny i obolochki. Moscow: Fizmatgiz. (In Russ.).
Kozunova, O.V. (2022). Nelineinyi raschet zhelezobetonnoi balki na uprugom osnovanii s pomoshch'yu zavisimosti «zhestkost'-krivizna» [Nonlinear calculation of a reinforced concrete beam on an elastic base using the «stiffness-curvature» relationship]. Stroitel'naya mekhanika i raschet sooruzhenii [Structural Mechanics and Analysis of Constructions], (1), 37–46. (In Russ., abstr. in Engl.). DOI: 10.37538/0039-2383.2022.1.37.46.
Solomin, V.I. & Shmatkov, S.B. (1986). Metody rascheta i optimal'noe proektirovanie zhelezobetonnykh fundamentnykh kon-struktsii. Moscow: Stroiizdat. (In Russ.).
Kozunova, O.B. (2022). Sovershenstvovanie metodiki rascheta gibkikh ortotropnykh plit na uprugom osnovanii. Chast' 2. Rezul'taty rascheta [Improvement of Calculation Technique for Flexible Orthotropic Plates on Elastic Base. Part 2. Calculation Results]. Nauka i tekhnika [Science & Technique], 21 (4), 290–296. (In Russ., abstr. in Engl.). DOI: 10.21122/2227-1031-2022-21-4-290-296.
Most read articles by the same author(s)
- S. BOSAKOV, O. KOZUNOVA, N. SHCHETKO, USING THE MOMENT-CURVATURE CONSTRAINT FOR NONLINEAR ANALYSIS OF REINFORCED CONCRETE BEAMS, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 16 (2021)
- O. KOZUNOVA, K. SIROSH, CALCULATION OF AN INFINITE SYSTEM OF CROSS BEAMS ON AN ELASTIC BASE BY THE VARIATION-DIFFERENCE METHOD, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 16 (2021)
- O. KOZUNOVA, A. PUSENKOV, STATIC CALCULATIONS OF A BEAM SLAB IN THE ELASTIC DIRECTION TAKING INTO ACCOUNT SHEAR STRESSES, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 1 (2024)