DETERMINATION OF THERMAL CONDUCTIVITY OF WET GAS-FILLED POLYMERIC MATERIALS

Main Article Content

V. NIKITSIN
V. KOFANOV
B. BACKIEL-BRZOZOWSKA

Abstract

A geometric model of the structure of the foam plastic is presented taking into account the moisture content and wetting of the pore surface. A mathematical description of the heat transfer process in a three-component model structure of wet foam is performed taking into account vapor diffusion in the pore space. A method for calculating the effective thermal conductivity of moisture-containing highly porous gas-filled polymer materials is proposed, which considers a model of a wet material with a solid skeleton, more accurately takes into account the resistance of the porous medium of vapor diffusion, defines the conditions for the transition from partial wetting of the pore surface with liquid to complete without the need for empirical coefficients. A computational experiment was conducted, the results of which show the mutual influence of moisture content, porosity and polymer concentration on the effective thermal conductivity of the material at a given temperature.

Article Details

How to Cite
NIKITSIN, V., KOFANOV, V., & BACKIEL-BRZOZOWSKA, B. (2019). DETERMINATION OF THERMAL CONDUCTIVITY OF WET GAS-FILLED POLYMERIC MATERIALS. Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences, (16), 15-23. Retrieved from https://journals.psu.by/constructions/article/view/308
Author Biographies

V. NIKITSIN, Государственная высшая школа им. Я. Павла II в Бялой Подляске, Польша

д-р техн. наук, проф.

V. KOFANOV, Брестский государственный технический университет

канд. техн. наук, доц.

B. BACKIEL-BRZOZOWSKA, Белостокский политехнический институт, Польша

канд. техн. наук

References

Гурьев, В.В. Тепловая изоляция в промышленности. Теория и расчет / В.В. Гурьев, В.С. Жолудов, В.Г. Петров-Денисов. – М. : Стройиздат, 2003. – 416 с.

Дульнев, Г.Н. Процессы переноса в неоднородных средах / Г.Н. Дульнев, В.В. Новиков. – Л. : Энергоатомиздат, 1991. – 248 с.

Bobociński, A. Wptyw wilgotności ponadsorpcyjnej na pzewodność ceplna betonow komorkowych / A. Bobociński // Prace Instytutu Techniki Budowlanej-Kwartalnik. – 2004. – Nr. 4. – S. 3–12.

Siwińska, A. Thermal conductivity coefficient of cement-based mortars as air relative humidity function / A. Siwińska, H. Garbalińska // Heat Mass Transfer. – 2011. – Vol. 47. – S. 1077–1087.

Collishaw, P.G. An assessment of expressions for the apartment thermal conductivity of cellular materials / P.G. Collishaw, J.R.G. Evans // Journal of Materials Science. – 1994. – Vol. 29. – P. 486–498.

Гурьев, В.В. Учет особенностей ячеистой структуры при анализе расчетной теплопроводности газонаполненных полимерных материалов / В.В. Гурьев, В.И. Никитин, В.А. Кофанов // Промышленное и гражданское строительство. – 2018. – № 9. – С. 98–104.

Ochs, F. Effective thermal conductivity of moistened insulation materials as a function of temperature / F. Ochs, W. Heidemann, H. Miiller-Steinhagen // Heat Mass Transfer. – 2008. – № 51. – P. 539–552.

Shi, M. Determination of effective thermal conductivity for polyurethane foam by use of fractal method / M. Shi, X. Li, Y. Chen // Science in China. Series E: Technological Sciences. – 2006. – Vol. 49, № 4. – P. 468–475.

Microstructure effects on thermal conductivity of open-cell foams generated from the Lagguare-Voronoi tessellation method / J. Randrianalisoa [et al.] // Heat Mass Transfer. – 2015. – № 98. – P. 277–286.

Baillis, D. Effective conductivity of Voronoi’s closed and open-cell foams: analytical laws and numerical results / D. Baillis, R. Coquard, S. Cunsolo // Materials Science. – 2017. – № 52. – P. 11146–11167.

Gliksman, L.R. Heat transfer in foams / L.R. Gliksman, N.C. Hilyard ; A. Cumingham (eds.) // Low density cellular plastics Springer. – Dordrecht, 1994. – P. 104–152.

Coquard, R. Numerical investigation of conductive heat transfer in high porosity foams / R. Coquard, D. Baillis // Acta Materialia. – 2009. – № 57. – P. 5466–5479.

Thermal insulation materials made of rigid polyurethane foam (PUR/DIR) : Report № 1 (October) / BING : Federation of Europen Rigid Polyurethane Foam Associations. – Brussels, 2006. – 33 p.

Nikitsin, V.I. Determination of capillary tortuosity coefficient in calculations of moisture transfer in building materials / V.I. Nikitsin, B. Backiel-Brzozowska // Heat Mass Transfer. – 2013. – № 56. – P. 30–34.

Sheffer, G.A. A whole range hygric material model : Modelling liquid and vapour transport properties in porous media / G.A. Sheffer // Heat Mass Transfer. – 2010. – Vol. 53. – P. 286–296.

Epstein, N. On tortuosity and the tortuosity factor in flow and diffusion through porous media / N. Epstein // Chemical Engineering Science. – 1989. – Vol. 44, № 3. – P. 777–779.

Mendes, M. An improved model for the effective conductivity of open-cell porous foams / M. Mendes, S. Ray, D. Trimis // Heat Mass Transfer. – 2014. – Vol. 75. – P. 224–230.

Uncertainty in the thermal conductivity of insulation materials / F. Dominguez-Munoz [et al.] // Building Simulation : мaterials of XI International IBPSA Conference, Glasgow, 27–30 July 2009. – Glasgow, 2009. – Р. 1008–1013.