SUGGESTIONS FOR CALCULATION OF RELATIVE STRAIN OF THE TOTAL SHRINKAGE OF EXPANDED CLAY CONCRETE

Main Article Content

V. RZHEVUTSKAYA
Yu. MASKALKOVA

Abstract

The article provides an analytical review of studies on the shrinkage strain development of expanded clay concrete, based on which it was established that a significant factor is the local raw material base. It means that for each region it is important to accumulate experimental data and correct design models for the analytical determination of the total shrinkage strain. In this regard, the task of the study was to develop suggestions for calculating the relative strain of the total shrinkage of expanded clay concrete, made on the basis of the local raw material base. Predicated on the results of the study and according to the provisions of SP 5.03.01 and Eurocode 2, the improved model for the analytical determination of the values of relative strain of the total shrinkage of structural expanded clay concrete was developed. The proposed model takes into account the value of cement activity as a determining factor of the cement stone strength, and it takes into account the water-cement ratio and the coarse aggregate volume. The proposed design model makes it possible to determine with sufficient accuracy the value of the relative strain of the total shrinkage of expanded clay concrete at the age of 28 to 120 days.

Article Details

How to Cite
RZHEVUTSKAYA, V., & MASKALKOVA, Y. (2023). SUGGESTIONS FOR CALCULATION OF RELATIVE STRAIN OF THE TOTAL SHRINKAGE OF EXPANDED CLAY CONCRETE. Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences, (2), 47-54. https://doi.org/10.52928/2070-1683-2023-34-2-47-54
Author Biography

Yu. MASKALKOVA, Belarusian-Russian University, Mogilev

канд. техн. наук, доц.

References

Rizaev, B., Akhmedov, I., Khamidov, A., Kholmirzaev, S., Zhalalov, Z. & Umarov, I. (2022). Raschet na vkhodnye i formal'nye deformatsii betona v estestvennykh usloviyakh sukhogo zharkogo klimata. J. of new century innovations, 19(6), 183–193. (In Russ.).

Tsvetkova, A.A., Agafonov, S.A., Goryacheva, A.O. & Maslak, Т.V. (2023). Rabota monolitnogo zhelezobetonnogo rebristogo perekrytiya pri nalichii priopornykh usadochnykh treshchin v rebrakh [The performance of a monolithic reinforced concrete ribbed floor with shrinkage cracks in the ribs]. Inzhenernye issledovaniya [Engineering Research], 11(1), 11–19. (In Russ., abstr. in Engl.).

Lazovskii, D.N., Tur, V.V., Glukhov, D.O. & Lazovskii, E.D. (2021). Uchet polzuchesti i usadki betona po SP 5.03.01-2020 pri raschete zhelezobetonnykh konstruktsii na osnove deformatsionnoi raschetnoi modeli [Creep and shrinking of concrete accounting according to SP 5.03.01-2020 when analysis of reinforced concrete structures based on deformational analytical model]. Vestn. Brestskogo gos. tekhn. un-ta [Vestnik of Brest State Technical University], 125(2), 7–12. (In Russ., abstr. in Engl.). DOI: 10.36773/1818-1212-2021-125-2-7-12.

Bazant, Z.P. (2001). Prediction of concrete creep and shrinkage: past, present and future. Nuclear Engineering and Design, 203(1), 27–38. DOI: 10.1016/S0029-5493(00)00299-5.

Clarke, J.L. (2005). Structural lightweight aggregate concrete. Glasgow: Blackie Academic & Professional, an imprint of Chap-man & Hall.

Raupov, Ch., Malikov, G. & Zokirov, J. (2022). Determination of the boundary of the linear creep of expanded clay concrete during compression. Science and Innovation, (4), 301–306. DOI: 10.5281/zenodo.6981518.

Bremner, T.W. (2008). Lightweight concrete. Developments in the Formulation and Reinforcement of Concrete (Second Edition), 307–323.

Zhao, H., Ma, Yu., Zhang, J., Hu, Zh., Li, H., Wang, Yu. … Wang, K. (2022). Effect of clay content on shrinkage of cementitious materials. Construction and Building Materials, 322. DOI: 10.1016/j.conbuildmat.2021.125959.

Kravchenko, S.A. & Posternak, A.A. (2014). Eksperimental'noe issledovanie usadki, polzuchesti i poter' napryazheniya v armature elementov iz keramzitobetona na mnogokomponentnom vyazhushchem. Vіsn. Odes'koї derzh. akad. bud-va ta arkhіtekturi, (56), 124–128. (In Russ.).

Kuryatnikov, Yu.Yu. & Kochetkov, R.S. (2019). Voprosy razrabotki keramzitobetona dlya monolitnogo stroitel'stva [The development of concrete for monolithic construction]. Vestn. Tverskogo gos. tekhn. un-ta [Vestnik of Tver state technical university], 3(3), 15–20. (In Russ., abstr. in Engl.).

Rzhevutskaya, V.A. & Moskal'kova, Yu.G. (2021). Otnositel'nye deformatsii polnoi usadki keramzitobetona [The relative total shrinkage strain of expanded clay concrete]. Vestn. Polots. gos. un-ta. Ser. F, Str-vo. Prikladnye nauki [Vestnik of Polotsk State University. Part F, Constructions. Applied Sciences], (16), 99–105. (In Russ., abstr. in Engl.).

Costa, H., Júlio, E. & Lourenço, J. (2012). New approach for shrinkage prediction of high-strength lightweight aggregate concrete. Constructions and Buildings materials, 35, 84–91. DOI: 10.1016/j.conbuildmat.2012.02.052.

Golishev, O.B. & Bambura, A.N. (2004). Kurs lektsii z osnov rozrakhunku konstruktsii z oporu zalizobetonu. Kyiv: Logos. (In Russ.).

Babich, E.M. (1998). Konstruktsii iz legkikh betonov na poristykh zapolnitelyakh. Kyiv: Vishcha shkola. (In Russ.).

Akhmedov, I., Rizaev, B., Khamidov, A., Kholmirzaev, S., Umarov, I. & Khakimov, S. (2022). Analiz vliyaniya sukhogo zharkogo klimata na rabotu zhelezobetonnykh elementov. J. of new century innovations, 19(6), 39–48. (In Russ.).

Maskalkova, Yu.G. & Rzhevutskaya, V.A. (2022). Compressive cylinder strength and deformability of expanded clay fiber-reinforced concrete with polypropylene. International Journal for Computational Civil and Structural Engineering, 18(2), 31–42. DOI: 10.22337/2587-9618-2022-18-2-31-42.