NONLINEAR CALCULATION OF BENT STEEL-REINFORCED CONCRETE ELEMENTS
Article Sidebar
Main Article Content
Abstract
Steel-reinforced concrete structures at the present stage of development of the construction industry are widely used in industrial buildings with heavy loads on floors, civil high-rise buildings and various engineering structures. The article presents the results of using a nonlinear calculation method to calculate the parameters of the stress-strain state (normal stresses and relative deformations at any stage of work under load, strength and deformability) of bent steel-reinforced concrete elements, provided that rigid steel profiles and reinforced concrete work together.
When calculating the parameters of the stress-strain state of steel-reinforced concrete elements, the stages of their work during manufacture (forced shrinkage deformations of monolithic concrete during its hardening) and operation (creep of concrete under prolonged load action) are taken into account. A criterion for calculating the bending moment corresponding to the strength of a steel-reinforced concrete element is proposed, which does not require normalization of the ultimate compressibility of concrete, allowing for a high degree of redistribution of forces in the cross section of a steel-reinforced concrete element with rigid reinforcement. The advantages of the nonlinear calculation method are demonstrated by examples of steel-reinforced concrete floor beams from TKP 45-5.03-16-2005 "Structures of steel-reinforced concrete coatings and floors. Design rules".
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
D. LAZOUSKI, Euphrosyne Polotskaya State University of Polotsk
д-р техн. наук, проф.
D. GLUKHOV, LLC «SoftClub», Minsk
канд. техн. наук, доц.
A. KHATKEVICH, Euphrosyne Polotskaya State University of Polotsk
канд. техн. наук
A. HIL, Euphrosyne Polotskaya State University of Polotsk
канд. техн. наук
E. CHAPARANGANDA, Botswana International University of Science and Technology
канд. техн. наук
References
Tamrazyan, A.G. & Loleit, A.F. (2018). Istoriya razvitiya teorii zhelezobetona: biograficheskii ocherk. Moscow: MGSU. (In Russ.).
Babalich, V.S. & Androsov, E.N. (2017). Stalezhelezobetonnye konstruktsii i perspektiva ikh primeneniya v stroitel'noi praktike Rossii [Steel-reinforced concrete structures and the prospects for their application in Russian construction practice]. Uspekhi sovremennoi nauki [Advances in modern science], 4(4), 205–208. (In Russ., abstr. in Engl.).
Kibireva, Yu.A. & Astaf'eva, N.S. (2018). Primenenie konstruktsii iz stalezhelezobetona [The use of steel-concrete structures]. Ekologiya i stroitel'stvo [Ekologiya i stroitelstvo], (2), 27–34. DOI: 10.24411/2413-8452-2018-10004. (In Russ., abstr. in Engl.).
Vinogradova, N.A. & Shvets, G.A. (2020). Issledovaniya stalezhelezobetonnykh izgibaemykh konstruktsii (obzor) [Research of steel-reinforced concrete bendable structures (review)]. Vestn. inzhener. shkoly DVFU [Bulletin of the FEFU engineering school], 1(42), 115–127. (In Russ., abstr. in Engl.).
Desyatkin, M.A., Konin, D.V., Martirosyan, A.S. & Travush, V.I. (2015). Raschet stalezhelezobetonnoi kolonny vysotnogo doma na kosoe vnetsentrennoe szhatie [Calculation of a steel-reinforced concrete column of a high-rise building for oblique eccentric compression]. Zhilishchnoe str-vo [Housing construction], (5), 92–95. (In Russ., abstr. in Engl.).
Tonkikh, G.P. & Chesnokov, D.A. (2021). Eksperimental'noe issledovanie sdvigovogo soedineniya monolitnykh stalezhelezobetonnykh perekrytii na ugolkovykh ankernykh uporakh [An experimental study of a shear connection of steel-reinforced concrete slabs with angle shear studs]. Vestn. MGSU [Vestnik MGSU], (2), 144–152. DOI: 10.22227/1997-0935.2021.2.144-152. (In Russ., abstr. in Engl.).
Vasil'ev, A.P. (1941). Zhelezobeton s zhestkoi armaturoi. Moscow; Leningrad: Gos. izd. stroit. lit. (In Russ.).
Mukhamediev, T.A. & Starchikova, O.I. (2006). Raschet prochnosti stalezhelezobetonnykh kolonn s ispol'zovaniem deformatsionnoi modeli. Beton i zhelezobeton, 4(541), 18–20. (In Russ.).
Karpenko, N.I., Sokolov, B.S. & Radaikin, O.V. (2013). K raschetu prochnosti, zhestkosti i treshchinostoikosti vnetsentrenno szhatykh zhelezobetonnykh elementov s primeneniem nelineinoi deformatsionnoi modeli [Сalculation of strength, stiffness and crack resistance of eccentrically compressed reinforced concrete elements using a non-linear deformation model]. Izv. Kazan. gos. arkhitektur.-stroit. un-ta [News of the Kazan State University of Architecture and Civil Engineering], 4(26), 113–120.
Kudinov, O.V. (2010). Novyi podkhod k otsenke prochnosti stalezhelezobetonnykh perekrytii. Beton i zhelezobeton, 2(563), 14–16. (In Russ.).
Arleninov, P.D. & Krylov, S.B. (2017). Sovremennoe sostoyanie nelineinykh raschetov zhelezobetonnykh konstruktsii [The current state of nonlinear calculations of reinforced concrete structures]. Seismostoikoe str-vo. Bezopasnost' sooruzhenii [Earthquake engineering. Constructions safety], (3), 50–53. (In Russ., abstr. in Engl.).
Gholamhoseini, A., Gilbert, R.I. & Bradford, M. (2018). Long-Term Behavior of Continuous Composite Concrete Slabs with Steel Decking. ACI Structural Journal, 115(2), 439–449. DOI: 10.14359/51701133.
Karpenko, N.I., Mukhamediev, T.A. & Petrov, A.N. (1986). Iskhodnye i transformirovannye diagrammy deformirovaniya betona i armatury. In S.M. Krylov (Eds.) & T.A. Mukhamediev (Eds.) Napryazhenno-deformirovannoe sostoyanie betonnykh i zhelezo-betonnykh konstruktsii: sb. nauch. tr. NIIZhB Gosstroya SSSR (7–25). Moscow: NIIZhB. (In Russ.).
Bondarenko, V.M. & Bondarenko, S.V. (1982). Inzhenernye metody nelineinoi teorii zhelezobetona. Moscow: Stroiizdat. (In Russ.).
Lazovskii, D.N., Tur, V.V., Glukhov, D.O. & Lazovskii, E.D. (2021). Uchet polzuchesti i usadki betona po SP 5.03.01-2020 pri raschete zhelezobetonnykh konstruktsii na osnove deformatsionnoi raschetnoi modeli [Creep and Shrinking of Concrete Accounting According to SP 5.03.01-2020 When Analysis of Reinforced Concrete Structures Based on Deformational Analytical Model]. Vestn. Brest. gos. tekhn. un-t [Vestnik of Brest State Technical University], 2(125), 7–12. DOI: 10.36773/1818-1212-2021-125-2. (In Russ., abstr. in Engl.).
Lazovskii, D.N. (1998). Usilenie zhelezobetonnykh konstruktsii ekspluatiruemykh stroitel'nykh sooruzhenii. Novopolotsk: Polots. gos. un-t. (In Russ.).
Murashev, V.N., Sigalov, E.E. & Baikov, V.N. (1962). Zhelezobetonnye konstruktsii. Obshchii kurs. Moscow: Gos. izd-vo lit. po str-vu, arkhitekture i stroit. materialam. (In Russ.).
Nemirovskii, Ya.M. (1955). Zhestkost' izgibaemykh zhelezobetonnykh elementov pri kratkovremennom i dlitel'nom zagruzheniyakh. Beton i zhelezobeton, (5), 172–176. (In Russ.).
Nemirovskii, Ya.M. (1968). Issledovanie napryazhenno-deformirovannogo sostoyaniya zhelezobetonnykh elementov s uchetom raboty rastyanutogo betona nad treshchinoi i peresmotr na etoi osnove teorii rascheta deformatsii i raskrytiya treshchin. In Prochnost' i zhestkost' zhelezobetonnykh konstruktsii (47–54). Moscow: [b.i.]. (In Russ.).
Berg, O.Ya. (1962). Fizicheskie osnovy teorii prochnosti betona i zhelezobetona. Moscow: Gosstroiizdat. (In Russ.).
Mukhamediev, T.A. & Nuguzhinova, G.S. (1995). Uchet deformatsii polzuchesti na osnove diagramm-izokhron v raschetakh sterzhnevykh zhelezobetonnykh elementov. In Inzhenernye problemy sovremennogo zhelezobetona (247–252). Ivanovo: IISI. (In Russ.).
Mukhamediev, T.A. & Sapozhnikov, M.A. (1989). Raschet sterzhnevykh elementov i sistem iz nikh s uchetom rezhimov kratkovremennykh nagruzhenii. In Novye eksperimental'nye issledovaniya i metody rascheta zhelezobetonnykh konstruktsii (119–128). Moscow: NIIZhB. (In Russ.).
Berg, O.Ya., Shcherbakov, E.N. & Pisanko, G.N. (1971). Vysokoprochnyi beton. Moscow: Stroiizdat. (In Russ.).
Tur, V.V. & Rak, N.A. (2003). Prochnost' i deformatsii betona v raschetakh konstruktsii. Brest: BGTU. (In Russ.).
Bortolotti, L. (1991). First Cracking Load of Concrete Subjected to Direct Tension. ACI Materials Journal, 88(1), 70–73.
Kolleger, J. (1991). Comparison of Fixed and Rotating Crack Models in the Analysis of Panels, Plates and Shells Subjected to Shear. In Concrete Shear in Earthquake: Houston International Workshop, Texas, USA, 13–16 January 1991 (216–225).
Zamaliev, F.S. (2017). Uchet nachal'nykh napryazhenii i deformatsii pri otsenke nesushchei sposobnosti stalezhelezobetonnykh konstruktsii na ekspluatatsionnye nagruzki. Izv. KGASU, 1(39), 91–101. (In Russ.).
Karpenko, N.I., Mukhamediev, T.A. & Petrov, A.N. (1987). Diagrammy deformirovaniya betona, ikh transformatsii v zavisimosti ot razlichnykh faktorov i ispol'zovanie v raschetakh konstruktsii. In Predel'nye sostoyaniya betonnykh i zhelezobetonnykh konstruktsii energeticheskikh sooruzhenii: materialy konferentsii i soveshchanii po gidrotekhnike. Leningrad: Energoatomizdat. (In Russ.).
Chaika, V.P. (1994). Kharakteristiki diagramm neodnorodnogo szhatiya betona. Beton i zhelezobeton, (1), 18–23. (In Russ.).
Prokopovich, I.E. (1963). Vliyanie dlitel'nykh protsessov na napryazhennoe i deformirovannoe sostoyanie sooruzhenii. Moscow: Stroiizdat. (In Russ.).
Prokopovich, I.E. & Zedgenidze, V.A. (1980). Prikladnaya teoriya polzuchesti. Moscow: Stroiizdat. (In Russ.).
Most read articles by the same author(s)
- D. LAZOVSKI, A. KHATKEVICH, CALCULATION OF RESISTANCE TO COMPRESSION OF MASONRY AND REINFORCED MASONRY ELEMENTS TAKING INTO ACCOUNT PHYSICAL NON-LINEARITY, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 16 (2017)
- D. GLUKHOV, Т. GLUKHOVA, A. ANDRIEVSKY, A. YANUSHONOK, THE GAS BALANCE IN THE SYSTEM OF INTERCONNECTED GAS PIPELINES UNDER NON-ISOTHERMAL STEADY STATE MODEL OF GAS TRANSPORTATION, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 16 (2018)
- A. KHATKEVICH, D. LAZOUSKI, D. GLUKHOV, A DEFORMATION APPROACH TO MODELING THE STRESS-STRAIN STATE OF COMPRESSED BRICKWORK ELEMENTS REINFORCED UNDER LOAD WITH A REINFORCED CONCRETE CAGE, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 3 (2023)
- A. LAZOVSKY, D. GLUKHOV, T. GLUKHOVA, ALGORITHM OF CALCULATION OF RESISTANCE TO BENDING OF PRECAST PRESTRESSED HOLLOW-CORE SLABS IN PLATFORM JOINTS OF BUILDINGS, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 8 (2017)
- D. HLUKHAU, A. KHATKEVICH, APPLICATION OF THE DEFORMATION METHOD OF CALCULATION OF DURABILITY OF NORMAL SECTIONS TO THE LONGITUDINAL AXIS OF SECTIONS OF COMPRESSED STONE ELEMENTS, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 8 (2016)
- A. HIL, Y. LAZOUSKI, EXPERIMENTAL RESEARCH METHODOLOGY OF CONTINIOUS REINFORCED CONCRETE BEAMS WITH HYBRID REINFORCEMENT OF THE TENSIONED ZONE OF NORMAL SECTION AT THE CENTRAL SUPPORT, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 16 (2019)
- V. KISELEV, A. HIL, PRACTICAL RECOMMENDATIONS FOR DESIGNING BROADENING CENTRAL LOADED FOUNDATION, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 16 (2015)
- D. LAZOUSKI, D. GLUKHOV, A. KALTUNOU, A. KHATKEVICH, NONLINEAR CALCULATION OF TUBULAR CONCRETE ELEMENTS DURING BENDING, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 3 (2024)