NONLINEAR CALCULATION OF TUBULAR CONCRETE ELEMENTS DURING BENDING
Article Sidebar
Main Article Content
Abstract
The question of the applicability of a nonlinear deformation model for the calculation of bent tubular concrete elements with round pipes is considered. A criterion for the destruction of a bent tubular concrete element without limiting concrete deformations during compression is proposed. The advantage of this failure criterion is the possibility of taking into account a high degree of redistribution of forces in the cross section of the bent tubular concrete element after the pipe steel reaches the yield strength and there is no need to normalize the ultimate compressibility of concrete. The results of the nonlinear calculation of the limiting force are compared with experimental data from the formed sample of studies. The applicability of the nonlinear calculation is confirmed, taking into account the authors' proposals for tubular concrete elements with round pipes during bending to calculate the moment corresponding to the beginning of the flow of pipe steel.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
D. LAZOUSKI, Euphrosyne Polotskaya State University of Polotsk
д-р техн. наук, проф.
D. GLUKHOV, LLC «SoftClub», Minsk
канд. техн. наук, доц.
A. KALTUNOU, Euphrosyne Polotskaya State University of Polotsk
канд. техн. наук, доц.
A. KHATKEVICH, Euphrosyne Polotskaya State University of Polotsk
канд. техн. наук
References
Krishan, A.L. (2009). Trubobetonnye kolonny dlya mnogoetazhnykh zdanii [The concrete-filled steel tube columns for high-rise buildings]. Stroitel'naya mekhanika inzhenernykh konstruktsii i sooruzhenii [Structural Mechanics of Engineering Constructions and Buildings], (4), 75–80. (In Russ., abstr. in Engl.).
Duvanova, I.A. & Sal'manov, I.D. (2014). Trubobetonnye kolonny v stroitel'stve vysotnykh zdanii i sooruzhenii [Concrete-filed steel tube columns in construction high-rise building and structures]. Stroitel'stvo unikal'nykh zdanii i sooruzhenii [Construction of Unique Buildings and Structures], 6(21), 89–103. (In Russ., abstr. in Engl.).
Ovchinnikov, I.I., Ovchinnikov, I.G., Chesnokov, G.V. & Mikhaldykin, E.S. (2015). O probleme rascheta trubobetonnykh konstruktsii s obolochkoi iz raznykh materialov. Chast' 1. Opyt primeneniya trubobetona s metallicheskoi obolochkoi [About the problem of the analysis of tube-confined concrete structures with a shell made of different materials. Part 2. Calculation of tube-confined concrete structures with a metallic shell]. Internet-zhurnal «NAUKOVEDENIE», 7(4). (In Russ., abstr. in Engl.). DOI: 10.15862/112TVN415.
Penkina, E.V. & Plotnikov, A.I. (2013). K voprosu o primenenii trubobetonnykh kolonn v mnogoetazhnykh i vysotnykh zdaniyakh. Mezhdunar. molodezhnaya nauch. konf. po estestvennonauchnym i tekhnicheskim distsiplinam «Nauchnomu progressu – tvorchestvo molodykh», v 3 chastyakh, Tom Chast' 3: materialy i doklady (121–123). Ioshkar-Ola: Povolzhskii gosudarstvennyi tekhnologicheskii universitet. (In Russ.).
Ovchinnikov, I.I., Ovchinnikov, I.G., Chesnokov, G.V. & Mikhaldykin, E.S. (2015). O probleme rascheta trubobetonnykh konstruktsii s obolochkoi iz raznykh materialov. Chast' 2. Raschet trubobetonnykh konstruktsii s metallicheskoi obolochkoi [About the problem of the analysis of tube-confined concrete structures with a shell made of different materials. Part 2. Calculation of tube-confined concrete structures with a metallic shell]. Internet-zhurnal «NAUKOVEDENIE», 7(4). (In Russ., abstr. in Engl.). DOI: 10.15862/112TVN415.
Nesvetaev, G.V. & Rezvan, I.V. (2011). Otsenka prochnosti trubobetona. Fundamental'nye issledovaniya, (12-3), 580–583. (In Russ.).
Kikin, A.I., Sanzharovskii, R.S. & Trull', V.A. (1974). Konstruktsii iz stal'nykh trub, zapolnennykh betonom. Moscow: Stroiizdat. (In Russ.).
Khazov, P.A., Sitnikova, A.K. & Chibakova, E.A. (2023). Raschet trubobetonnykh konstruktsii: sovremennoe sostoyanie voprosa i perspektivy dal'neishikh issledovanii (obzor). Privolzhskii nauchnyi zhurnal, 4(68), 57–76. (In Russ.).
Arleninov, P.D., Krylov, S.B. & Smirnov, P.P. (2017). Raschetno-eksperimental'nye issledovaniya izgibaemykh trubobetonnykh konstruktsii. Seismostoikoe stroitel'stvo. Bezopasnost' sooruzhenii, (4), 34–38. (In Russ.).
Astankov, K.Yu. & Ovchinnikov, I.G. (2021). Tendentsii primeneniya trubobetonnykh konstruktsii dlya stroitel'stva malykh mostov. Molodezh' i nauchno-tekhnicheskii progress v dorozhnoi otrasli yuga Rossii: Materialy XV Mezhdunar. nauch.-tekhn. konf. studentov, aspirantov i molodykh uchenykh (109–117). Volgograd: Volgogradskii gosudarstvennyi tekhnicheskii universitet. (In Russ.).
Ovchinnikov, I.G., Paryshev, D.N., Il'tyakov, A.V., Moiseev, O.Yu., Kharin, V.V., Popov, I.P. & Kharin, D.A. (2019). Povyshenie nagruzochnoi sposobnosti trubobetonnoi balki [Increasing the load capacity of a concrete beam]. Transport. Transportnye sooruzheniya. Ekologiya [Transport. Transport facilities. Ecology], (4), 58–66. (In Russ., abstr. in Engl.).
Yakupova, L.Z., Astankov, K.Yu., & Ovchinnikov, I.G. (2023). O vozmozhnosti primeneniya svoda pravil SP 266.1325800.2016 «Konstruktsii stalezhelezobetonnye. Pravila proektirovaniya» dlya proektirovaniya trubobetonnykh konstruktsii v malom mostostroenii [The code of norms SP 266.1325800.2016 «Composite steel and concrete structures. Design rules» applicability for the low-span bridges made of concrete-filled steel tubes design]. Transport. Transportnye sooruzheniya. Ekologiya [Transport. Transport facilities. Ecology], (2), 112–121. (In Russ., abstr. in Engl.).
Sysoev, O.E., Makarenko, S.V., Dobryshkin, A.Yu. & Kuznetsov, E.A. (2015). Issledovanie napryazhenno-deformirovannogo sostoyaniya izgibaemykh elementov stroitel'nykh konstruktsii iz trubobetona. Uchenye zapiski Komsomol'skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 1(3), 94–99. (In Russ.).
Deng, Y.-Q., Huang, Y. & Young, B. (2024). Design of concrete-filled high-strength steel RHS and SHS tubes under bending. Engineering Structures, 320. DOI: 10.1016/j.engstruct.2024.118891.
Popov, I.P. (2024). Povyshenie nesushchei sposobnosti balki [Increasing the load-bearing capacity of the beam]. Vestn. Inzhenernoi shkoly Dal'nevostochnogo federal'nogo un-ta [FEFU: School of Engineering Bulletin], 3(60), 96–101. (In Russ., abstr. in Engl.). DOI: 10.24866/2227-6858/2024-3/96-101.
Storozheno, L.I., Efimenko, V.I. & Plakhotnyi, P.I. (1993). Izgibaemye trubobetonnye konstruktsii. Kyiv: Budіvel'nik. (In Russ.).
Khazov, P.A., Vedyaikina, O.I., Pomazov, A.P. & Kozhanov, D.A. (2024). Uprugoplasticheskoe deformirovanie stalebetonnykh balok s lokal'nym smyatiem pri trekhtochechnom izgibe [Elastic-plastic deformation of steel-concrete beams with local crumpling during three-point bending]. Problemy prochnosti i plastichnosti [Problems of Strength and Plasticity], 86(1), 71–82. (In Russ., abstr. in Engl.). DOI: 10.32326/1814-9146-2024-86-1-71-82.
Moiseev, O.Yu., Paryshev, D.N., Ovchinnikov, I.G., Kharin, V.V. & Ovchinnikov, I.I. (2016). Innovatsionnaya trubobetonnaya balka dlya proletnykh stroenii balochnykh malykh mostov. Innovatsionnyi transport, 2(20), 67–71. (In Russ.). DOI: 10.20291/2311-164X-2016-2-67-71.
Lazovskii, D.N., Gil', A.I. & Glukhov, D.O. (2024). Deformatsionnyi podkhod k raschetu soprotivleniya szhatiyu stalezhelezobetonnykh elementov [Deformation approach to the calculation of compressive strength of steel-reinforced concrete elements]. Vestnik MGSU, 19(9), 1469–1483. (In Russ., abstr. in Engl.). DOI: 10.22227/1997-0935.2024.9.1469-1483.
Lazovskii, D.N., Glukhov, D.O., Khatkevich, A.M., Gil', A.I. & Chaparanganda, E. (2024). Nelineinyi raschet izgibaemykh stale-zhelezobetonnykh elementov [Nonlinear calculation of bent steel-reinforced concrete elements]. Vestn. Polots. gos. un-ta. Ser. F, Str-vo. Priklad. nauki [Herald of Polotsk State University. Series F, Civil engineering. Applied sciences], 2(37), 9–23. (In Russ., abstr. in Engl.). DOI: 10.52928/2070-1683-2024-37-2-9-23.
Vedernikova, A.A. & Opbul, E.K. (2021). Raschet nesushchei sposobnosti vnetsentrenno szhatykh trubobetonnykh elementov s uchetom nelineinykh diagramm materialov [Bearing capacity calculation of eccentrically compressed concrete filled steel tube columns taking into account non-linear diagrams of materials]. Vestnik grazhdanskikh inzhenerov [Bulletin of Civil Engineers], 1(84), 36–45. (In Russ., abstr. in Engl.). DOI: 10.23968/1999-5571-2021-18-1-36-45.
Khashkhozhev, K.N. & Avakov, A.A. (2021). Raschet tsentral'no szhatykh trubobetonnkh kolonn kol'tsevogo secheniya s uchetom fizicheskoi nelineinosti [Calculation of centrally compressed concrete filled steel tubular columns of annular section taking into account physical nonlinearity]. Stroitel'stvo i arkhitektura [Construction and Architecture], 9(3), 14–18. (In Russ., abstr. in Engl.). DOI: 10.29039/2308-0191-2021-9-3-14–18.
Konin, D.V., Krylov, A.S., Gavrilov, D.N., Zhdanova, A.A. & Voropaeva, M.I. (2023). O rabote stalezhelezobetonnykh konstruktsii pri vnetsentrennom szhatii. Promyshlennoe i grazhdanskoe stroitel'stvo, (12), 31–37. (In Russ.). DOI: 10.33622/0869-7019.2023.12.31-37.
Krishan, A.L., Sagadatov, A.I. & Mel'nichuk, A.S. (2010). Realizatsiya nelineinoi deformatsionnoi modeli pri raschete prochnosti trubobetonnykh kolonn. Predotvrashchenie avarii zdanii i sooruzhenii, (10), 635–643. (In Russ.).
Chepurnenko, V.S., Yazyev, B.M., Urvachev, P.M, & Avakov, A.A. (2020). Opredelenie napryazhenno-deformirovannogo sos-toyaniya korotkikh vnetsentrenno-szhatykh trubobetonnykh kolonn metodom konechnykh elementov putem svedeniya trekhmernoi zadachi k dvumernoi [Determination of stress-strain state of short eccentrically loaded concrete-filled steel tubular (CFST) columns using finite element method with reducing the problem from three-dimensional to two-dimensional]. Stroitel'stvo i arkhitektura [Construction and Architecture], 8(4), 87–94. (In Russ., abstr. in Engl.). DOI: 10.29039/2308-0191-2020-8-4-87-94.
Krishan, A.L. (2011). Diagrammnyi raschet prochnosti trubobetonnykh kolonn. In S.N. Krivoshapko (Eds.) Mezhdunar. nauch.-prakt. konf. «Inzhenernye sistemy – 2011»: tez. dokl., Moskva, 05–08 apr. 2011 g. (79). Moscow: Ros. un-t druzhby narodov. (In Russ.).
Krishan, A.L., Troshkina, E.A. & Kuz'min, A.V. (2011). Predlozheniya po raschetu prochnosti trubobetonnykh kolonn. Vestn. Magnitogorskogo gos. tekhn. un-ta im. G.I. Nosova, 1(33), 66–69. (In Russ.).
Vedernikova, A.A. (2023). Sovershenstvovanie metodiki rascheta trubobetonnykh elementov obratnym chislenno-analiticheskim metodom i ee primenenie. Inzhenernyi vestnik Dona, 11(107), 437–449. (In Russ.).
Snigireva, V.A. & Gorynin, G.L. (2018). The nonlinear stress-strain state of the concrete-filled steel tube structures. Magazine of Civil Engineering, 83(7), 73–82. DOI: 10.18720/MCE.83.7
Tur, V.V. & Rak, N.A. (2003). Prochnost' i deformatsii betona v raschetakh konstruktsii: monogr. Brest: BGTU. (In Russ.).
Astankov K.Yu. (2023). Analiz sovremennykh podkhodov k proektirovaniyu i stroitel'stvu arochnykh mostov s ispol'zovaniem trubobetona [Analysis of modern approaches to the design and construction of arch bridges using tube-reinforced concrete]. Internet-zhurnal «Transportnye sooruzheniya» [Russian Journal of Transport Engineering], 10(4). (In Russ., abstr. in Engl.). DOI: 10.15862/11SATS423.
Most read articles by the same author(s)
- D. LAZOUSKI, D. GLUHAU, Y. LAZOUSKI, GENERAL METHOD BASED ON A NONLINEAR DEFORMATION MODELFOR STRENGTH AND DEFORMATIONS ANALYSIS OF ECCENTRICAL COMPRESSED CONCRETE COLUMNS, STRENGTHENED WITH A REINFORCED CONCRETE SECTION ENLARGEMENT, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 16 (2021)
- D. LAZOUSKI, E. CHAPARANGANDA, EXPERIMENTAL AND THEORETICAL STUDY OF BENDING REINFORCED CONCRETE ELEMENTS RESTORED AFTER DESTRUCTION, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 1 (2023)
- D. LAZOUSKI, D. GLUHAU, Y. LAZOUSKI, MODELING OF THE BEHAVIOR OF REINFORCED CONCRETE ELEMENTS, STRENGTHENED IN THE TENSIONED ZONE, UNDER THE ACTION OF A LONG-TERM LOAD, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 8 (2022)
- D. LAZOUSKI, D. GLUHAU, Y. LAZOUSKI, A. HIL, COMPUTATIONAL MODEL OF THE STRESS-STRAIN STATE OF STATICALLY INDETERMINATE REINFORCED CONCRETE STRUCTURES, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 14 (2022)
- D. LAZOVSKI, A. KHATKEVICH, INFLUENCE OF THE GRIDS TYPE FOR TRANSVERSE REINFORCEMENT IN HORIZONTAL MORTAR JOINTS ON THE STRESSED-DEFORMED STATE OF SHORT REINFORCED STONE ELEMENTS, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 8 (2019)
- R. BOHUSH, D. GLUKHOV, A. YAGUBKIN, E. SKRIPELYOV, INTEGRATED VIDEO MONITORING SYSTEM TO TEST STRENGTH AND DEFORMABILITY OF BUILDING MATERIALS AND STRUCTURES, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 8 (2020)
- A. KHATKEVICH, D. LAZOUSKI, D. GLUKHOV, E. CHAPARANGANDA, A DEFORMATION APPROACH TO CALCULATING THE CALCULATED VALUES OF THE COMPRESSION RESISTANCE OF STONE AND REINFORCED STONE ELEMENTS IN THE FRAMEWORK OF CHECKS OF THE LIMITING STATE OF THE BEARING CAPACITY, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 2 (2023)
- D. GLUKHOV, Т. GLUKHOVA, A. ANDRIEVSKY, A. YANUSHONOK, THE ALGORITHM OF CALCULATION OF THE COMMODITY-TRANSPORT WORK THE MAIN GAS PIPELINE IN THE FRAMEWORK OF NON-ISOTHERMAL STEAD, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 8 (2018)
- D. GLUKHOV, R. BOGUSH, Е. LAZOVSKY, T. GLUKHOVA, PROBABILITY ANALYSIS OF THE STRUCTURAL REINFORCED CONCRETE ELEMENT, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 16 (2017)
- D. LAZOVSKI, A. KHATKEVICH, CALCULATION OF RESISTANCE TO COMPRESSION OF MASONRY AND REINFORCED MASONRY ELEMENTS TAKING INTO ACCOUNT PHYSICAL NON-LINEARITY, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 16 (2017)