APPROXIMATIONS OF CONCRETE DEFORMATION DIAGRAMS IN THE NONLINEAR CALCULATION OF NON-CENTRALLY COMPRESSED TUBULAR CONCRETE ELEMENTS
Article Sidebar
Main Article Content
Abstract
The possibility of using some approximations of concrete deformation diagrams to calculate non-centrally compressed tubular concrete elements is considered. The results of nonlinear calculation of stress-strain state parameters are compared with experimental data from the formed sample of studies. Approximation of the concrete deformation diagram with a horizontal section following the peak point makes it possible to obtain stress-strain state parameters that are more consistent with experimental data.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
D. LAZOUSKI, Euphrosyne Polotskaya State University of Polotsk
д-р техн. наук, проф.
D. GLUKHOV, LLC «SoftClub», Minsk
канд. техн. наук, доц.
A. KHATKEVICH, Euphrosyne Polotskaya State University of Polotsk
канд. техн. наук
References
Krishan, A.L., Rimshin, V.I., Kolesnikov, V.D., Astaf'eva, M.A. & Likhid'ko, M.A. (2024). Prochnost' izgibaemykh trubobetonnykh elementov usovershenstvovannoi konstruktsii [Strength of bending concrete filled steel elements of improved design]. Str-vo i rekonstruktsiya [Building and Reconstruction], 6(116), 37–47. (In Russ., abstr. in Engl.). DOI: 10.33979/2073-7416-2024-116-6-37-47.
Krishan, A.L., Rimshin, V.I. & Astaf'eva, M.A. (2018). Prochnost' tsentral'no szhatykh trubobetonnykh elementov usovershenstvovannoi konstruktsii [Strength of centrally compressed pipe elements of improved design]. Str-vo i rekonstruktsiya [Building and Reconstruction], 3(77), 12–21. (In Russ., in Engl.).
Krishan, A.L., Rimshin, V.I. & Astafeva, M.A. (2020). Szhatye trubobetonnye elementy. Teoriya i praktika. Moscow: ASV. (In Russ.).
Krishan, A.L., Rimshin, V.I. & Astaf'eva, M.A. (2023). Samozaklinivayushchiesya elementy v trubobetonnykh kolonnakh [Self-Locking Elements in Pipe-Concrete Columns]. Academia. Arkhitektura i stroitel'stvo [Academia. Architecture and Сonstruction], (3), 140–148. (In Russ., in Engl.). DOI: 10.22337/2077-9038-2023-3-140-148.
Rimshin, V.I., Anpilov, S.M., Krishan, A.L., Astaf'eva, M.A. & Stupak, A.A. (2023). Prochnost' korotkikh trubobetonnykh kolonn kvadratnogo secheniya [Strength of short concrete filled steel tube columns of square section]. Russkii inzhener [Russian engineer], 2(79), 46–48. (In Russ., abstr. in Engl.).
Krishan, A.L., Rimshin, V.I., Astaf'eva, M.A., Sagadatov, A.I., Semenova, M.N. & Stupak, A.A. (2022). Prochnost' i deformativnost' szhatykh trubobetonnykh elementov kvadratnogo secheniya. BST: Byulleten' stroitel'noi tekhniki, 6(1054), 16–18. (In Russ.).
Krishan, A.L. & Surovtsov, M.M. (2013). Eksperimental'nye issledovaniya prochnosti gibkikh trubobetonnykh kolonn [Experimental reserches of strength of flexible concrete-filled tube (CFT) columns]. Vestn. Magnitogorskogo gos. tekhn. un-ta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University], 1(41), 90–92. (In Russ., abstr. in Engl.).
Ahmed, M., Liang, Q.Q., Patel, V.I. & Hadi, M.N.S. (2019). Numerical analysis of axially loaded circular high strength concrete-filled double steel tubular short columns. Thin-Walled Structures, (138), 105–116. DOI: 10.1016/j.tws.2019.02.001
Du, G., Andjelic, A., Li, Z., Lei, Z. & Bie, X. (2018). Residual Axial Bearing Capacity of Concrete-Filled Circular Steel Tubular Columns (CFCSTCs) after Transverse Impact. Applied Sciences, 8(5). URL: https://www.mdpi.com/2076-3417/8/5/793/htm.
Ge, H.B. & Usami, T. (1994). Strength analysis of concrete-filled thin-walled steel box columns. Journal of Constructional Steel Research, 30(3), 259–281. DOI: 10.1016/0143-974X(94)90003-5.
Han, L.-H., Lam, D., & Nethercot, D. (2018). Design Guide for Concrete-filled Double Skin Steel Tubular Structures. London: CRC Press. DOI: 10.1201/9780429440410.
Hassanein, M.F, Elchalakani, M. & Patel, V.I. (2017). Overall buckling behaviour of circular concrete-filled dual steel tubular columns with stainless steel external tubes. Thin-Walled Structures, 115(10), 336–348. DOI: 10.1016/j.tws.2017.01.035.
Kibriya, T. (2017). Performance of Concrete Filled Steel Tubular Columns. American Journal of Civil Engineering and Architecture, 5(2), 35–39.
O'Shea, M.D. & Bridge, R.Q. (2000). Design of circular thin-walled concrete filled steel tubes. Journal of Structural Engineering, 126(11), 1295–1303. DOI: 10.1061/(ASCE)0733-9445(2000)126:11(1295).
Uy, B., Tao, Z. & Han, L.-H. (2011). Behaviour of short and slender concrete-filled stainless steel tubular columns. Journal of Constructional Steel Research, 67(3), 360–378. DOI: 10.1016/j.jcsr.2010.10.004.
Abed, F.H., Abdelmageed, Y.I. & Ilgun, A.K. (2018). Flexural response of concrete-filled seamless steel tubes. Journal of Construc-tional Steel Research, (149), 53–63. DOI: 10.1016/j.jcsr.2018.06.030.
Jiang, A., Chen, J. & Jin, W.L. (2013). Experimental investigation and design of thin-walled concrete-filled steel tubes subject to bending. Thin-Walled Structures, (63), 44–50. DOI: 10.1016/j.tws.2012.10.008.
Gho, W.M. & Liu, D. (2004). Flexural behavior of high-strength rectangular concrete-filled steel hollow sections. Journal of Constructional Steel Research, 60(11), 1681–1696. DOI: 10.1016/j.jcsr.2004.03.007.
Li, G., Liu, D., Yang, Z. & Zhang, C. (2017). Flexural behavior of high strength concrete filled high strength square steel tube. Journal of Constructional Steel Research, (128), 732–744. DOI: 10.1016/j.jcsr.2016.10.007.
Han, L.-H., Lu, H., Yao, G.-H. & Liao, F. (2006). Further Study on the Flexural Behavior of Concrete-filled Steel Tubes. Journal of Constructional Steel Research, 62(6), 554–565. DOI: 10.1016/j.jcsr.2005.09.002.
Al-Obaidi, S., Salim, T. & Hemzah, S.A. (2018). Flexural behavior of concrete filled steel tube composite with different concrete compressive strength. International Journal of Civil Engineering and Technology, 9(7), 824–832.
Xiong, M.-X., Xiong, D.-X. & Liew, J.Y.R. (2017). Flexural performance of concrete filled tubes with high tensile steel and ultra-high strength concrete. Journal of Constructional Steel Research, (132), 191–202. DOI: 10.1016/j.jcsr.2017.01.017.
Tomii, M. & Sakino, K. (1979). Elasto-plastic behavior of concrete filled square steel tubular beam-columns. Transactions of the Architectural Institute of Japan, (280), 111–120.
Uy, B. (2001). Strength of short concrete filled high strength steel box columns. Journal of Constructional Steel Research, 57(2), 113–134. DOI: 10.1016/S0143-974X(00)00014-6.
Wang, R., Han, L.-H., Nie, J.-G. & Zhao, X.-L. (2014). Flexural performance of rectangular CFST members. Thin-Walled Structures, (79), 154–165. DOI: 10.1016/j.tws.2014.02.015.
Arleninov, P.D., Krylov, S.B. & Smirnov, P.P. (2017). Raschetno-eksperimental'nye issledovaniya izgibaemykh trubobetonnykh konstruktsii [Calculation of the central and eccentrically compressed pipe-concrete structures strength]. Seismostoikoe stroitel'stvo. Bezopasnost' sooruzhenii [Earthquake engineering. Constructions safety], (4), 34–38. (In Russ., abstr. in Engl.).
Khazov, P.A. & Pomazov, A.P. (2023). Eksperimental'noe issledovanie prodol'nogo i poperechnogo izgiba trubobetonnykh sterzhnei [Experimental Study of Longitudinal and Transverse Bending of Pipe Concrete Rods]. Zhilishchnoe stroitel'stvo [Housing Con-struction], (12), 66–71. (In Russ., abstr. in Engl.). DOI: 10.31659/0044-4472-2023-12-66-71.
Yakupova, L.Z., Astankov, K.Y., & Ovchinnikov, I.G. (2023). O vozmozhnosti primeneniya svoda pravil SP 266.1325800.2016 «Konstruktsii stalezhelezobetonnye. Pravila proektirovaniya» dlya proektirovaniya trubobetonnykh konstruktsii v malom mostostroenii [The code of norms SP 266.1325800.2016 «Composite steel and concrete structures. Design rules» applicability for the low-span bridges made of concrete-filled steel tubes design]. Transport. Transportnye sooruzheniya. Ekologiya [Transport. Transport facilities. Ecology], (2), 112–121. (In Russ., abstr. in Engl.).
Deng, Y.-Q., Huang, Y. & Young, B. (2024). Design of concrete-filled high-strength steel RHS and SHS tubes under bending. Engineering Structures, 320. DOI: 10.1016/j.engstruct.2024.118891.
Popov, I.P. (2024). Povyshenie nesushchei sposobnosti balki [Increasing the load-bearing capacity of the beam]. Vestn. Inzhenernoi shkoly Dal'nevostochnogo federal'nogo un-ta [FEFU: School of Engineering Bulletin], 3(60), 96–101. (In Russ., abstr. in Engl.). DOI: 10.24866/2227-6858/2024-3/96-101.
Ovchinnikov, I.G., Paryshev, D.N., Il'tyakov, A.V., Moiseev, O.Y., Kharin, V.V., Popov, I.P. & Kharin, D.A. (2019). Povyshenie nagruzochnoi sposobnosti trubobetonnoi balki [Increasing the load capacity of a concrete beam]. Transport. Transportnye sooruzheniya. Ekologiya [Transport. Transport facilities. Ecology], (4), 58–66. (In Russ., abstr. in Engl.).
Sysoev, O.E., Makarenko, S.V., Dobryshkin, A.Y. & Kuznetsov, E.A. (2015). Issledovanie napryazhenno-deformirovannogo sos-toyaniya izgibaemykh elementov stroitel'nykh konstruktsii iz trubobetona. Uchenye zapiski Komsomol'skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 1(3), 94–99. (In Russ.).
Khazov, P.A., Vedyaikina, O.I., Pomazov, A.P. & Kozhanov, D.A. (2024). Uprugoplasticheskoe deformirovanie stalebetonnykh balok s lokal'nym smyatiem pri trekhtochechnom izgibe [Elastic-plastic deformation of steel-concrete beams with local crumpling during three-point bending]. Problemy prochnosti i plastichnosti [Problems of Strength and Plasticity], 86(1), 71–82. (In Russ., abstr. in Engl.). DOI: 10.32326/1814-9146-2024-86-1-71-82.
Kikin, A.I., Sanzharovskii, R.S. & Trull', V.A. (1974). Konstruktsii iz stal'nykh trub, zapolnennykh betonom. Moscow: Stroiizdat. (In Russ.).
Konin, D.V., Krylov, A.S., Gavrilov, D.N., Zhdanova, A.A. & Voropaeva, M.I. (2023). O rabote stalezhelezobetonnykh konstruktsii pri vnetsentrennom szhatii. Promyshlennoe i grazhdanskoe stroitel'stvo, (12), 31–37. (In Russ.). DOI: 10.33622/0869-7019.2023.12.31-37.
Khazov, P.A., Sitnikova, A.K. & Chibakova, E.A. (2023). Raschet trubobetonnykh konstruktsii: sovremennoe sostoyanie voprosa i perspektivy dal'neishikh issledovanii (obzor) [Calculation of pipe-concrete structures: the current state of the issue and prospects for further research (review)]. Privolzhskii nauchnyi zhurnal [Privolzhsky Scientific Journal], (4), 57–76. (In Russ., abstr. in Engl.).
Khashkhozhev, K.N. & Avakov, A.A. (2021). Raschet tsentral'no szhatykh trubobetonnkh kolonn kol'tsevogo secheniya s uchetom fizicheskoi nelineinosti [Calculation of centrally compressed concrete filled steel tubular columns of annular section taking into account physical nonlinearity]. Stroitel'stvo i arkhitektura [Construction and Architecture], 9(3), 14–18. (In Russ., abstr. in Engl.). DOI: 10.29039/2308-0191-2021-9-3-14–18.
Chepurnenko, V.S., Yazyev, B.M., Urvachev, P.M, & Avakov, A.A. (2020). Opredelenie napryazhenno-deformirovannogo sos-toyaniya korotkikh vnetsentrenno-szhatykh trubobetonnykh kolonn metodom konechnykh elementov putem svedeniya trekhmernoi zadachi k dvumernoi [Determination of stress-strain state of short eccentrically loaded concrete-filled steel tubular (CFST) columns using finite element method with reducing the problem from three-dimensional to two-dimensional]. Stroitel'stvo i arkhitektura [Construction and Architecture], 8(4), 87–94. (In Russ., abstr. in Engl.). DOI: 10.29039/2308-0191-2020-8-4-87-94.
Krishan, A.L., Sagadatov, A.I. & Mel'nichuk, A.S. (2010). Realizatsiya nelineinoi deformatsionnoi modeli pri raschete prochnosti trubobetonnykh kolonn. Predotvrashchenie avarii zdanii i sooruzhenii, (10), 635–643. (In Russ.).
Krishan, A.L. (2011). Diagrammnyi raschet prochnosti trubobetonnykh kolonn. In S.N. Krivoshapko (Eds.) Mezhdunar. nauch.-prakt. konf. «Inzhenernye sistemy – 2011»: tez. dokl., Moskva, 05–08 apr. 2011 g. (79). Moscow: Ros. un-t druzhby narodov. (In Russ.).
Krishan, A.L., Troshkina, E.A. & Kuz'min, A.V. (2011). Predlozheniya po raschetu prochnosti trubobetonnykh kolonn. Vestn. Magnitogorskogo gos. tekhn. un-ta im. G.I. Nosova, 1(33), 66–69. (In Russ.).
Vedernikova, A.A. & Opbul, E.K. (2021). Raschet nesushchei sposobnosti vnetsentrenno szhatykh trubobetonnykh elementov s uchetom nelineinykh diagramm materialov [Bearing capacity calculation of eccentrically compressed concrete filled steel tube columns taking into account non-linear diagrams of materials]. Vestn. grazhdanskikh inzhenerov [Bulletin of Civil Engineers], 1(84), 36–45. (In Russ., abstr. in Engl.). DOI: 10.23968/1999-5571-2021-18-1-36-45.
Vedernikova, A.A. (2023). Sovershenstvovanie metodiki rascheta trubobetonnykh elementov obratnym chislenno-analiticheskim metodom i ee primenenie. Inzhenernyi vestn. Dona, (11), 437–449. (In Russ.).
Astankov K.Y. (2023). Analiz sovremennykh podkhodov k proektirovaniyu i stroitel'stvu arochnykh mostov s ispol'zovaniem trubobetona [Analysis of modern approaches to the design and construction of arch bridges using tube-reinforced concrete]. Internet-zhurnal «Transportnye sooruzheniya» [Russian Journal of Transport Engineering], 10(4). (In Russ., abstr. in Engl.). DOI: 10.15862/11SATS423.
Krishan, A. L. & Narkevich, M. Y. (2012). Analiz sushchestvuyushchikh metodik rascheta vnetsentrenno szhatykh trubobetonnykh kolonn gorodskikh sooruzhenii i zdanii. Predotvrashchenie avarii zdanii i sooruzhenii, (1), 1–5. (In Russ.).
Lazovskii, D.N., Gil', A.I. & Glukhov, D.O. (2024). Deformatsionnyi podkhod k raschetu soprotivleniya szhatiyu stalezhelezobetonnykh elementov [Deformation approach to the calculation of compressive strength of steel-reinforced concrete elements]. Vestn. MGSU [Vestnik MGSU], 19(9), 1469–1483. (In Russ., abstr. in Engl.). DOI: 10.22227/1997-0935.2024.9.1469-1483.
Lazovskii, D.N., Glukhov, D.O., Khatkevich, A.M., Gil', A.I. & Chaparanganda, E. (2024). Nelineinyi raschet izgibaemykh stale-zhelezobetonnykh elementov [Nonlinear calculation of bent steel-reinforced concrete elements]. Vestn. Polots. gos. un-ta. Ser. F, Str-vo. Prikladnye nauki [Herald of Polotsk State University. Series F, Civil engineering. Applied sciences], 2(37), 9–23. (In Russ., abstr. in Engl.). DOI: 10.52928/2070-1683-2024-37-2-9-23.
Lazovskii, D.N., Glukhov, D.O., Koltunov, A.I. & Khatkevich, A.M. (2024). Nelineinyi raschet trubobetonnykh elementov s kruglymi trubami pri izgibe [Nonlinear calculation of tubular concrete elements during bending]. Vestn. Polots. gos. un-ta. Ser. F, Str-vo. Prikladnye nauki [Herald of Polotsk State University. Series F, Civil engineering. Applied sciences], 3(38), 2–11. (In Russ., abstr. in Engl.). DOI: 10.52928/2070-1683-2024-38-3-2-11.
Lazovskii, D.N., Khatkevich, A.M. & Glukhov, D.O. (2024). Nelineinaya deformatsionnaya model' v raschete vnetsentrenno szhatykh trubo-betonnykh elementov [Nonlinear deformation model in the analysis of eccentrically compressed concrete-filled steel tube elements]. Str-vo i rekonstruktsiya [Building and Reconstruction], 6(116), 48–59. (In Russ., abstr. in Engl.). DOI: 10.33979/2073-7416-2024-116-6-48-59.
Most read articles by the same author(s)
- D. LAZOUSKI, D. GLUHAU, Y. LAZOUSKI, GENERAL METHOD BASED ON A NONLINEAR DEFORMATION MODELFOR STRENGTH AND DEFORMATIONS ANALYSIS OF ECCENTRICAL COMPRESSED CONCRETE COLUMNS, STRENGTHENED WITH A REINFORCED CONCRETE SECTION ENLARGEMENT, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 16 (2021)
- D. LAZOUSKI, E. CHAPARANGANDA, EXPERIMENTAL AND THEORETICAL STUDY OF BENDING REINFORCED CONCRETE ELEMENTS RESTORED AFTER DESTRUCTION, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 1 (2023)
- D. LAZOUSKI, D. GLUHAU, Y. LAZOUSKI, MODELING OF THE BEHAVIOR OF REINFORCED CONCRETE ELEMENTS, STRENGTHENED IN THE TENSIONED ZONE, UNDER THE ACTION OF A LONG-TERM LOAD, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 8 (2022)
- D. LAZOUSKI, D. GLUHAU, Y. LAZOUSKI, A. HIL, COMPUTATIONAL MODEL OF THE STRESS-STRAIN STATE OF STATICALLY INDETERMINATE REINFORCED CONCRETE STRUCTURES, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 14 (2022)
- R. BOHUSH, D. GLUKHOV, A. YAGUBKIN, E. SKRIPELYOV, INTEGRATED VIDEO MONITORING SYSTEM TO TEST STRENGTH AND DEFORMABILITY OF BUILDING MATERIALS AND STRUCTURES, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 8 (2020)
- D. LAZOVSKI, A. KHATKEVICH, INFLUENCE OF THE GRIDS TYPE FOR TRANSVERSE REINFORCEMENT IN HORIZONTAL MORTAR JOINTS ON THE STRESSED-DEFORMED STATE OF SHORT REINFORCED STONE ELEMENTS, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 8 (2019)
- A. KHATKEVICH, D. LAZOUSKI, D. GLUKHOV, E. CHAPARANGANDA, A DEFORMATION APPROACH TO CALCULATING THE CALCULATED VALUES OF THE COMPRESSION RESISTANCE OF STONE AND REINFORCED STONE ELEMENTS IN THE FRAMEWORK OF CHECKS OF THE LIMITING STATE OF THE BEARING CAPACITY, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 2 (2023)
- D. GLUKHOV, Т. GLUKHOVA, A. ANDRIEVSKY, A. YANUSHONOK, THE ALGORITHM OF CALCULATION OF THE COMMODITY-TRANSPORT WORK THE MAIN GAS PIPELINE IN THE FRAMEWORK OF NON-ISOTHERMAL STEAD, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 8 (2018)
- D. LAZOVSKI, A. KHATKEVICH, CALCULATION OF RESISTANCE TO COMPRESSION OF MASONRY AND REINFORCED MASONRY ELEMENTS TAKING INTO ACCOUNT PHYSICAL NON-LINEARITY, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 16 (2017)
- D. LAZOUSKI, D. GLUKHOV, A. KHATKEVICH, A. HIL, E. CHAPARANGANDA, NONLINEAR CALCULATION OF BENT STEEL-REINFORCED CONCRETE ELEMENTS, Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences: No. 2 (2024)