THE AUTOMATION OF MAPPING OF REWETTED AFTER CUT-OFF SITES OF PEATLANDS OF BELARUS ON THE BASIS OF SATELLITE IMAGES OF MEDIUM SPATIAL RESOLUTION
Article Sidebar
Main Article Content
Abstract
Large areas of cut-off peatlands of Belarus require rewetting, the mosaic arrangement of the elements of their surface cover after rewetting impedes their mapping by interactive processing of remote sensing data, leading to the necessity to automate mapping. In the paper we show the automation of the thematic mapping of the surface of rewetted after cut-off sites of peatlands of Belarus on the basis of broadband satellite images in the visible and near infrared (the beginning of NIR region) spectral bands with a spatial resolution of 10…15 m without direct human intervention, with the applicability of the methodology to peatlands of Belarus without using ground data. When mapping the surface of rewetted after cut-off sites of peatlands of Belarus on the basis of the above mentioned remote sensing data in automatic mode it is possible to single out open water, bare peat and peat-mineral (one class when mapping), organo-mineral and postpeat soils and vegetation cover, with the possibility of separating closed deciduous woody vegetation into a distinct class.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
N. BAMBALOV, Институт природопользования НАН Беларуси, Минск
акад., д-р с.-х. наук, проф.
References
Adam, E. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review / E. Adam, O. Mutanga, D. Rugege // Wetlands Ecology and Management. – 2010. – Vol. 18, № 3. – P. 281–296.
Яновский, А.А. Автоматизация радиометрической коррекции спутниковых снимков при картографировании деградированных торфяных почв Беларуси / А.А. Яновский // Природопользование. – Минск, 2014. – Вып. 26.
ASTER User’s Guide Part I. General. (Ver. 4.0). Earth Remote Sensing Data Analysis Center. – July, 2005.
USGS digital spectral library splib06a / R.N. Clark [et al.] // U.S. Geological Survey, Digital Data Series 231. – 2007.
Исследование оптических и физико-химических свойств почв Беларуси / А. Ю. Жумарь [и др.] / Респ. науч.-техн. центр дистанционной диагностики природной среды Акад. наук Беларуси и Гос. ком. Беларуси по экологии, Ин-т физики Акад. наук Беларуси, БелНИИ почвоведения и агрохимии. – Минск, 1992. – Ч. 1: Каталог спектральных и физико-химических свойств почв Беларуси (Препринт№ 8). – 107 с.
Fox, J. The R Commander: A Basic Statistics Graphical User Interface to R / J. Fox // Journal of Statistical Software. – 2005. – Vol. 14, № 9. – P. 1–42.
R: A language and environment for statistical computing [Electronic resource] / R Development Core Team, R Foundation for Statistical Computing. – Vienna, Austria, 2014. – Mode of access: http://www.R-project.org/.
Frazier, P.S. Water Body Detection and Delineation with Landsat TM Data / P.S. Frazier, K.J. Page // Photogrammetric Engineering & Remote Sensing. – 2000. – Vol. 66, № 12. – P. 1461–1467.
McFeeters, S. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features / S. McFeeters // Int. J. Remote Sens. – 1996. – № 17. – P. 1425–1432.
VISAT Version 5.0 [Electronic resource] / Brockmann Consult and contributes. – 2014.
An Automated Method for Extracting Rivers and Lakes from Landsat Imagery / H. Jiang [et al.] // Remote Sens. – 2014. – Vol. 6. – P. 5067–5089.
Vermote, E. LEDAPS surface reflectance product description. Version 2.0 / E. Vermote, N. Saleous. – January, 2007. – 21 p.
Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation / C.J. Tucker // Remote Sens. Environ. – 1979. – № 8(2). – P. 127–150.
Abrams, M.D. Leaf structural characteristics of 31 hardwood and conifer tree species in central Wisconsin – influence of light regime and shade-tolerance rank / M.D. Abrams, M.E. Kubiske // Forest Ecology and Management. –1990. – № 31. – P. 245–253.
Ustin, S.L. Remote sensing of plant functional types / S.L. Ustin, J. A. Gamon // New Phytologist. – 2010. – № 186. – P. 795–816.
North American forest disturbance mapped from a decadal Landsat record / J.G. Masek [et al.] // Remote Sensing of Environment. – 2008. – Т. 112, № 6. – С. 2914–2926.
Zhu, Z. Continuous monitoring of forest disturbance using all available Landsat imagery / Z. Zhu, C.E. Woodcock, P. Olofsson // Remote Sensing of Environment. – 2012. – № 122. – P. 75–91.
Functional convergence in regulation of net CO2 flux in heterogeneous tundra landscapes in Alaska and Sweden / G. R. Shaver [et al.] // Journal of Ecology. – 2007. – № 95. – P. 802–817.
Carlson, T.N. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index / T.N. Carlson, D. A. Riziley // Remote Sens. Environ. – 1997. – № 62. – P. 241–252.
Indices of Vegetation Activity / A. Huete [et al.] // Biophysical Applications of Satellite Remote Sensing; eds. J.M. Hanes. – Springer, 2013. – P. 1–41.
Яновский, А.А. Автоматизация картографирования деградированных торфяных почв Беларуси по спутниковым снимкам среднего пространственного разрешения / А.А. Яновский, Н.Н. Бамбалов // Природопользование. – Минск, 2014. – Вып. 26.
Бамбалов, Н.Н. Агрогенная эволюция осушенных торфяных почв / Н.Н. Бамбалов // Почвоведение. – 2005. – № 1. – С. 29–37.
Sadiq, A. Remote sensing and spectral characteristics of desert sand from Qatar Peninsula, Arabian/Persian Gulf / A. Sadiq, F. Howari // Remote Sensing. – 2009. – Т. 1, № 4. – С. 915–933.
Разработать прогноз изменения структуры почвенного покрова (СПП) и плодородия мелиорированных почв: отчет о НИР (заключ.) / ИПИПРЭ Акад. наук Беларуси; науч. рук. д-р с.-х. наук Н.Н. Бамбалов. – Минск, 1995. – 148 с.