CLASSIFICATION OF PRODUCTS OF SELECTIVE GRINDING OF GLASS PLASTIC WASTE
Article Sidebar
Main Article Content
Abstract
It is proposed to use a multistage classification technology, including pneumatic classification and mechanical separation on a sieve, to obtain secondary fibrous material from the products of selective grinding of fiberglass production waste. A developed installation for studying the process of selective grinding of fiberglass waste, including a classification stage, is presented. The results of experimental studies of the extraction of under-crushed material, small fibers and particles of crushed polymer matrix from the products of selective grinding of waste, trimmings of fiberglass based on the binder Depol S-180 PT and fiberglass rods based on ED-20 are presented. Rational values of the average air flow velocity on the classifier cross-sections are determined, allowing the most efficient implementation of the pneumatic classification process in a rotor-gravity classifier. The diameter of the sieve holes is selected necessary for high-quality separation of polymer matrix particles from the fibrous fraction. The content of glass fiber in the obtained fibrous material was determined by means of the burning method. The presented technological scheme allows to extract fibrous material from the products of crushing fiberglass waste, which can be used as a raw material in the production of new products.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
A. LEVDANSKI, Belarusian State Technological University, Minsk
д-р техн. наук, проф.
References
Talalaeva, G.V., & Paznikova, S.N. (2023). Sovremennye kompozicionnye materialy: perspektivy i riski primeneniya ih v oblasti kompleksnoj bezopasnosti i grazhdanskoj oborony [Modern composite materials: prospects and risks of their use in the field of integrated security and civil defense]. Tekhnologii grazhdanskoj bezopasnosti [Civil SecurityTechnology], 20(1), 107–114. (In Russ.).
Kulikova, Yu.V., Slyusar', N.N., & Shajdurova, G.I. (2017). Analiz problemy utilizacii othodov kompozicionnyh materialov [Analiz problemy utilizacii othodov kompozicionnyh materialov]. Byulleten nauki i praktiki [Bulletin of Science and Practice], 24(11), 255–261. (In Russ.).
Yang, Y., Boom, R., Irion, B., Van Heerden, D.J., Kuiper, P., & De Wit, H. (2012). Recycling of Composite Materials. Chemical Engineering and Processing: Process Intensification, 51, 53–68. DOI: 10.1016/j.cep.2011.09.007.
Rico, M., Zelaya, J.R., García, B., & Vanegas, D. (2024). Mechanical properties of recycled Glass Fiber Reinforced Polymers (rGFRP) in limestone calcined clay cement mortars. Revista EIA, 21(41), 1–19. DOI: 10.24050/reia.v21i41.1720.
Abdallah, R., Juaidi, A., Sava, M.A., Çamur, H., Albatayneh, A., Abdala, S., & Manzano-Agugliaro, F. (2021). Retracted: a critical review on recycling composite waste using pyrolysis for sustainable development. Energies, 14(18). DOI: 10.3390/en14185748.
DeRosa, R., Telfeyan, E., Gaustaud, G., & Mayes, S. (2005). Strength and microscopic investigation of unsaturated polyester BMC rein-forced with SMC-recyclate. Journal of Thermoplastic Composite Materials, 18(4), 333–349. DOI: 10.1177/0892705705049560.
Palmer, J., Ghita, O.R., Savage, L., & Evans, K.E. (2009). Successful closed-loop recycling of thermoset composites. Composites Part A, 40(4), 490–498. DOI: 10.1016/j.compositesa.2009.02.002.
Pickering, S.J. (2012). Recycling Thermoset Composite Materials. Wiley Encyclopedia of Composites, 1–17. DOI: 10.1002/9781118097298.weoc214.
Kouparitsas, C.E., Kartalis, C.N., Varelidis, P.C., Tsenoglou, C.J., & Papaspyrides, C.D. (2002). Recycling of the Fibrous Fraction of Reinforced Thermoset Composites. Polymer Composites, 23(4), 682–689. DOI: 10.1002/pc.10468.
Kordikova, E.I., Spiglazov, A.V., CHirkun, D.I., & Kuprash, E.A. (2013). Utilizaciya izdelij iz voloknistogo kompozicionnogo materiala [Disposal of fiber composite products]. Trudy BGTU [Proceedings of BSTU], 4, 66–68. (In Russ.).