ОБЗОР ТЕХНИЧЕСКИХ СВОЙСТВ ЦЕЛЛЮЛОЗНОЙ ИЗОЛЯЦИИ

##plugins.themes.bootstrap3.article.main##

А. И. ДУБАТОВКА
Р. В. ТВЕРДОХЛЕБОВ

Аннотация

Рассматривается изоляция из целлюлозного волокна, производимого из переработанной бумаги, обладающего низкой энергоемкостью производства и хорошей теплопроводностью. Однако из-за недостатка информации на русском языке о ее технических свойствах и опыте применения она мало используется в сравнении с традиционными изоляционными материалами. Представлен обзор и упорядочивание существующих научных сведений о целлюлозной изоляции. Рассмотрены история и объемы её применения, состав и технология производства, экологические, механические, теплофизические, влажностные, акустические, противопожарные, фунгицидные, коррозионные свойства, долговечность, современное техническое регулирование. Полученная информация отвечает на ряд насущных вопросов и подтверждает актуальность применения такой изоляции в строительстве. Относительно высокие эксплуатационные свойства ее зарубежных производителей очерчивают перспективы совершенствования отечественной целлюлозной изоляции.

##plugins.themes.bootstrap3.article.details##

Как цитировать
ДУБАТОВКА, А. И., & ТВЕРДОХЛЕБОВ, Р. В. (2018). ОБЗОР ТЕХНИЧЕСКИХ СВОЙСТВ ЦЕЛЛЮЛОЗНОЙ ИЗОЛЯЦИИ. Вестник Полоцкого государственного университета. Серия F. Строительство. Прикладные науки, (8), 67-81. извлечено от https://journals.psu.by/constructions/article/view/236

Библиографические ссылки

A review on the properties of cellulose fibre insulation / P. Lopez Hurtado [et al.] // Build. Environ. – 2016. – Vol. 96. – P. 170–177.

Гнип, И.Я. Теплофизические свойства эковаты / И.Я. Гнип, В.И. Кершулис, С.А. Веялис // Строительные материалы. – 2000. – № 11. – С. 25–27.

Веялис, С.А. Обследование влажности эковаты в облегченных кирпичных стенах зданий с нормальным тепловлажностным режимом / С.А. Веялис, И.Я. Гнип, В.И. Кершулис // Строительные материалы. – 2001. – № 7. – С. 19–21.

Майсурадзе, Н.В. Исследование теплофизических свойств эковаты в ограждающих конструкциях / Н.В. Майсурадзе, Н.А. Трофимова, А.Г. Петухова // Строительные материалы. – 2009. – № 8. – С. 48–49.

Кетов, А.А. Исследование экологической опасности теплоизоляционного материала эковата / А.А. Кетов, П.А. Кетов, М.П. Красновских // Строительные материалы. – 2016. – № 5 – С. 78–80.

Кресова, Е.В. Исследование теплопотерь индивидуального жилого дома, построенного с применением местных теплоизоляционных материалов / Е.В. Кресова, Д.Ю. Кужелко, С.П. Кундас // Журн. Белорус. гос. ун-та. – 2017. – № 4. – С. 92–99.

Anvendelse af alternative isoleringsmaterialer / C. Pedersen [et al.], 2003. – 158 p.

Rasmussen, T.V. Praktiske erfaringer med alternative isoleringsmaterialer / T.V. Rasmussen, K.F. Hansen. – 2004. – 74 p.

Berge, B. The ecology of building materials / B. Berge, 2009. – 447 p.

Siddiqui, S.A. A handbook on cellulose insulation / S.A. Siddiqui. – R.E. Krieger Pub. Co, 1989. – 178 p.

Triboulot, P. L’isolation en ouate de cellulose principes et mise en oeuvre / P. Triboulot, E. Mougel, J. Brilland. – 2010. – 94 p.

Bomberg, M. EE9-1 innovative materials: bio-fiber batts and boards / M. Bomberg, G. Chrenka // Proceedings of BEST-2 conference. – 2010. – P. 12–14.

Kwon, Y.C. Cellulose Insulation for Use as Building Insulation in Korea / Y.C. Kwon, D.W. Yarbrough. – 2017. – Vol. 70, № Amsce. – P. 75–79.

Kwon, Y.C. A Comparison of Korean Cellulose Insulation with Cellulose Insulation Manufactured in the United States of America / Y.C. Kwon, D.W. Yarbrough // J. Build. Phys. – 2004. – Vol. 27, № 3. – P. 185–197.

Vejelis, S. Performance of Loose-Fill Cellulose Insulation / S. Vejelis, I. Gnipas, V. Keršulis // Mater. Sci. – 2006. – Vol. 12, № 4. – P. 2–4.

Фриштер, Ю.В. Технология строительства энергоэффективных домов / Ю.В. Фриштер // Строительные материалы. – 2009. – № 4. – С. 121–122.

National Toxicology Program. NTP Toxicity study report on the atmospheric characterization, particle size, chemical composition, and workplace exposure assessment of cellulose. Toxicity Report Series Number 74. NIH Publication No. 06-5963 / National Toxicology Program. – 2006. – 1-62, A1-C2 p.

ECHA. Background document to RAC and SEAC opinions on inorganic ammonium salts / ECHA, 2015. – 227 p.

Vinha, J. Hygrothermal performance of timber-framed external walls in Finnish climatic conditions: A method for determining the sufficient water vapour resistance of the interior lining of a wall assembly / J. Vinha. – Ph.D. thesis, Tampere University of Technology, 2007. – 380 p.

BENZ24. Ökologische Dämmstoffe – Der Ratgeber [Electronic resource] / BENZ24. – Mode of access: https://benz24.de/media/landingpages/ratgeber/ebook/oekologisch_daemmen/leitfaden-ratgeber-oekologische-daemmstoffe.pdf.

Дубатовка, А.И. Огневые испытания стеновых панелей с каркасом из тонкостенных холодноформованных профилей со сборной обшивкой из стекломагниевого листа / А.И. Дубатовка // Вестник Полоцкого государственного университета. Сер. F, Строительство. Прикладные науки. – 2015. – № 8. – C. 57–61.

Дубатовка, А.И. Современные конструктивные решения каркасных зданий с применением легких ограждающих конструкций / А.И. Дубатовка // Вестн. Брест. гос. техн. ун-та. – 2016. – Т. 1. – C. 102–108.

Dubatovka, A.I. Fire tests of cold-formed steel structures. Wall slab with magnesium oxide assembled cladding / A.I. Dubatovka, R.V. Tverdokhlebov, S. Starovoi’tov // Proc. of the 7th European Conference on Steel and Composite Structures EUROSTEEL 2014, 10–12 Sept. 2014. – Naples, Italy : ECCS European Convention for Constructional Steelwork, 2014. – P. 1–6 (11/41–395).

McConnell, E.E. Summary of data for chemical selection. Cellulose insulation / E.E. McConnell. – 1994. – 25 p.

Chemical and physical properties of processed newspaper compared to wheat straw and wood shavings as animal bedding / P.L. Ward [et al.] // J. Dairy Sci. – 2000. – Vol. 83, № 2. – P. 359–367.

Derome, D. Moisture Accumulation in Cellulose Insulation Caused by Air Leakage in Flat Wood Frame Roofs / D. Derome // J. Build. Phys. – 2005. – Vol. 28, № 3. – P. 269–287.

Fink, H.-P. Progress in cellulose shaping: 20 years industrial case studies at Fraunhofer IAP / H.-P. Fink, J. Ganster, A. Lehmann // Cellulose. – 2014. – Vol. 21, № 1. – P. 31–51.

Jones, C. Embodied Energy and Carbon – The ICE Database v.2.0 [Electronic resource] / C. Jones, G. Hammond. – Mode of access: http://www.circularecology.com/embodied-energy-and-carbon-footprint-database.html. – Дата доступа: 22.03.2018.

Zabalza Bribián, I. Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential / I. Zabalza Bribián, A. Valero Capilla, A. Aranda Usón // Build. Environ. – 2011. – Vol. 46, № 5. – P. 1133–1140.

A comparative Life Cycle assessment of building insulation products made of stone wool, paper wool and flax / A.C. Schmidt [et al.] // Int. J. Life Cycle Assess. – 2004. – Vol. 9, № 1. – P. 53–66.

Takano, A. A multidisciplinary approach to sustainable building material selection: A case study in a Finnish context / A. Takano, M. Hughes, S. Winter // Build. Environ. – 2014. – Vol. 82. – P. 526–535.

Tettey, U.Y.A. Effects of different insulation materials on primary energy and CO2 emission of a multi-storey residential building / U.Y.A. Tettey, A. Dodoo, L. Gustavsson // Energy Build. – 2014. – Vol. 82. – P. 369–377.

Дубатовка, А.И. Экологическая безопасность соединений бора в целлюлозной изоляции / А.И. Дубатовка // Журн. Белорус. гос. ун-та. Экология. – 2018.

ECIA. Environmental Product Declaration. Loose fill cellulose insulation [Электронный ресурс] / ECIA.

Rasmussen, T.V. Sætningsfri indblæsning af løsfyldsisolering i vægge / T.V. Rasmussen, 2001. – 77 p.

Rasmussen, T.V. Modelling Settling of Loose-fill Insulation in Walls, Part I / T.V. Rasmussen // J. Build. Phys. – 2000. – Vol. 25. – P. 129–141.

Rasmussen, T.V. Modelling Settling of Loose-fill Insulation in Walls, Part II Determination of Coefficients / T.V. Rasmussen // J. Build. Phys. – 2001. – Vol. 25, № January 2002. – P. 189–208.

Rasmussen, T.V. Verification of Density Predicted for Prevention of Settling of Loose-fill Cellulose Insulation in Walls / T.V. Rasmussen // J. Build. Phys. – 2003. – Vol. 27, № 1. – P. 49–69.

Rasmussen, T.V. Prediction of density for prevention of settling of hygroscopic and nonhygroscopic loose-fill insulation in walls / T.V. Rasmussen // J. Therm. Envel. Build. Sci. – 2005. – Vol. 28, № 3. – P. 245–267.

Salonvaara, M. Impact of Weather on Predicting Drying Characteristics of Spray-Applied Cellulose Insulation / M. Salonvaara, M. Pazera, A. Karagiozis // Thermal Performance of the Exterior Envelopes of Buildings XI. – 2010. – 14 p.

The properties of cellulose insulation applied via the wet spray process / P. Lopez Hurtado [et al.] // Build. Environ. – 2016. – Vol. 107. – P. 43–51.

Nielsen, B.L. Alternativ isolering i Tyskland / B.L. Nielsen, M. Pedersen, 1999. – 73 p.

Uncertainty in the thermal conductivity of insulation materials / F. Domínguez-Muñoz [et al.] // Energy Build. – 2010. – Vol. 42, № 11. – P. 2159–2168.

Nicolajsen, A. Thermal transmittance of a cellulose loose-fill insulation material / A. Nicolajsen // Build. Environ. – 2005. – Vol. 40, № 7. – P. 907–914.

An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials. Part II: Experimental, numerical and analytical data / P. Talukdar [et al.] // Int. J. Heat Mass Transf. – 2007. – Vol. 50, № 25–26. – P. 4915–4926.

Sandberg, P.I. Determination of the Effects of Moisture on the Thermal Transmissivity of Cellulose Fiber Loose·Fill Insulation / P.I. Sandberg // Thermal Performance of the Exterior Envelopes of Buildings III. – 1992. – P. 517–525.

Experimental Investigation of the Hygrothermal Performance of Insulation Materials / K.K. Hansen [et al.] // Thermal Performance of the Exterior Envelopes of Buildings VIII, 2001. – 10 p.

Varme- og fugttekniske undersøgelser af alternative isoleringsmaterialer [Электронный ресурс] / K.K. Hansen [et al.]. – 1999. – 37 p.

Rode, C. Organic Insulation Materials : Effect on Indoor Humidity and Necessity of a Vapor Barrier / C. Rode // Thermal Performance of the Exterior Envelopes of Buildings VII. – 1998. – P. 109–121.

Hansen, K.K. Sorption isotherms – A catalogue / K.K. Hansen, 1986. – 142 p.

CMHC. Wet-Sprayed Cellulose Insulation in Wood-Frame Construction Introduction, Research & Development Highlights Technical Series 90-240, Edmonton, Canada / CMHC. – 1990.

Godish, T.J. Mold Infestation of Wet Spray-Applied Cellulose Insulation / T.J. Godish, D.R. Godish // J. Air Waste Manag. Assoc. – 2006. – Vol. 56, № 1. – P. 90–95.

Vrána, T. Comparison of fibrous insulations – Cellulose and stone wool in terms of moisture properties resulting from condensation and ice formation / T. Vrána, K. Gudmundsson // Constr. Build. Mater. – 2010. – Vol. 24, № 7. – P. 1151–1157.

Hansen, M.H. Brug af alternativ isolering i Finland og Sverige / M.H. Hansen, S.S. Eriksen. – 2000. – 64 p.

Moisture Buffer Value of Materials in Building / C. Rode [et al.] // J. ASTM Int. – 2007. – Vol. 4, № 5. – 12 p.

Niemelä, T. Carbon Dioxide Permeability of Cellulose-Insulated Wall Structures / T. Niemelä, J. Vinha, R. Lindberg, 2000. – P. 55.

Rose, W.B. Temperature and Moisture Performance of Wall Assemblies with Fiberglass and Cellulose Insulation / W.B. Rose, D.J. McCaa // Thermal Performance of the Exterior Envelopes of Buildings VII. – 1998. – P. 133–144.

Guide to determining climate regions by county / M.C. Baechler [et al.]. – Vol. 7.3, 2015. – 50 p.

Ueno, K. BA-1501: Monitoring of Double-Stud Wall Moisture Conditions in the Northeast About / K. Ueno, 2015. – 72 p.

Rasmussen, T.V. Måling på alternative isoleringsmaterialer / T.V. Rasmussen, A. Nicolajsen. – 2004. – 96 p.

Rasmussen, T.V. Assessment of the performance of organic and mineral-based insulation products used in exterior walls and attics in dwellings / T.V. Rasmussen, A. Nicolajsen // Build. Environ. – 2007. – Vol. 42, № 2. – P. 829–839.

Vinha, J. Drying rate of timber-framed external wall assemblies in Nordic climate / J. Vinha, P. Käkelä // Performance of Exterior Envelopes of Buildings IX. – Florida, 2004. – P. 11.

Fugtsikre træfacader. Fugtindhold i højisolerede træfacader (in Danish. Moisture-safe timber frame walls. Moisture content insuperinsulated timber frame walls) / T. Andersen [et al.], 2002. – 95 p.

Hagentoft, C.-E. Moisture Conditions in a North Facing Wall with Cellulose Loose Fill Insulation: Constructions with and without Vapor Retarder and Air Leakage / C.-E. Hagentoft, L.-E. Harderup // J. Build. Phys. – 1996. – Vol. 19, № 3 – P. 228–243.

Kautsch, P. Zellulose-Innendämmung ohne Dampfsperre / P. Kautsch. – Wien, 2005. – 112 p.

Boonyartikarn, S. Fiber Glass vs. Cellulose Installed Performance / S. Boonyartikarn, S.R. Spiezle, 1990.

Wilkes, K.E. Thermal performance of fiberglass and cellulose attic insulations / K.E. Wilkes, P.W. Childs // Performance of the Exterior Envelopes of Buildings V. – Clearwater Beach, Florida, 1992. – P. 357–367.

Pedersen, D.B. Bygningsakustiske egenskaber for bygningsdele med alternative isoleringsmaterialer / D.B. Pedersen, 2003. – 55 p.

Day, M. Combustibility of loose fiber fill cellulose insulation: The role of borax and boric acid / M. Day, D.M. Wiles // J. Therm. Envel. Build. Sci. – 1978. – Vol. 2, № 1 – P. 30–39.

Sprague, R.W. The Use of Boron Products in Cellulose Insulation / R.W. Sprague, K.K. Shen // J. Therm. Insul. – 1979. – Vol. 2, № 4 – P. 161–174.

Chiou, N. A Review of the Literature: Fire Retardants in Cellulosic Insulation / N. Chiou, D.W. Yarbrough // J. Therm. Envel. Build. Sci. – 1987. – Vol. 10, № 3 – P. 219–224.

National Fiber. Cellulose Insulation and Fire Safety [Электронный ресурс] / National Fiber.

Applegate Insulation. New Data on Fire Safety of Aged Cellulose Insulation [Электронный ресурс]. – Режим доступа: http://www.applegateinsulation.com/Product-Info/Technical-Pages/249492.aspx. – Дата доступа: 12.03.2018.

Lea, D. Cellulose: Building insulation with high recovered content, low embodied energy / D. Lea // Green Build. Mater. 96 Conf. – 1996. – Vol. 1. – 4 p.

Chiou, N. Permanency of boric acid used as a fire retardant in cellulosic insulation / N. Chiou, D. Yarbrough // Energy Build. – 1990. – Vol. 14. – P. 351–361.

Fallis, A. Thermal properties and use of cellulosic insulation produced from recycled paper / A. Fallis // J. Chem. Inf. Model. – 2013. – Vol. 53, № 9. – P. 1689–1699.

Dowds, T.J.J. A Field Study of the Fire Resistance Characteristics of Aged Loose-Fill Insulations: An Update / T.J.J. Dowds, L.J.J. Infante, E. Pentz // J. Therm. Envel. Build. Sci. – 1991. – Vol. 15, № 1. – P. 45–56.

CIMA. The burning question: the truth about cellulose insulation & fire [Электронный ресурс] / CIMA. – Режим доступа: https://www.cellulose.org/images/SpecialReport01-TheBurningQuestion.pdf. – Дата доступа: 13.03.2018.

Sultan, M.A. Results of Fire Resistance Tests on Full-Scale Floor Assemblies / M.A. Sultan, Y.P. Sèguin, P. Leroux. – 1998. – 189 p.

Results of Fire Resistance Tests on Small-Scale Floor Assemblies / M.A. Sultan [et al.], 2000. – 80 p.

Results of Fire Resistance Tests on Full-Scale Floor Assemblies – Phase II / M.A. Sultan [et al.], 2005. – 661 p.

CMHC. Results of Fire Resistance Tests on Small-Scale Insulated and Non-Insulated Gypsum Board Protected Wall Assemblies // J. Build. Phys. – 1997. – Vol. 21, № 2. – P. 128–136.

Sultan, M.A. Results of Fire Resistance Tests on Full-Scale Gypsum Board Wall Assemblies / M.A. Sultan, Lougheed. – 2002.

Lionel, A. Fire Performance of Loose Fill Cellulosic Insulation in Residential Occupancies – A Progress Report / A. Lionel, 1980. – 58 p.

Kolarkar, P.N. Structural and Thermal Performance of Cold-formed Steel Stud Wall Systems under Fire Conditions / P.N. Kolarkar. – Ph.D. thesis, Queensland University of Technology, 2010. – 412 p.

Hansen, M.H. Skimmelsvampevækst i organiske isoleringsmaterialer / M.H. Hansen, 2002. – P. 15.

Herrera, J. Assessment of fungal growth on sodium polyborate-treated cellulose insulation / J. Herrera // J. Occup. Environ. Hyg. – 2005. – Vol. 2, № 12. – P. 626–632.

Herrera, J. The sporocidal and sporostatic effect of sodium polyborate and boron-treated cellulose insulation on common indoor fungal species / J. Herrera, M.E. Omodon, C.L. Dillavou // Micol. Apl. Int. – 2007. – Vol. 19, № 2. – P. 35–49.

Herrera, J. Sodium Polyborate-Based Additives on Recycled Cellulose Insulation Kill or Prevent Germination of Common Indoor Fungi / J. Herrera // Building Enclosure Science and Technology (BEST). – Minneapolis, 2008. – P. 1–10.

Moisture Performance of a Contemporary Wood-Frame House Operated at Design Indoor Humidity Levels / C. Carll [et al.]. – 2007.

Occurrence of Mold in a Two-Story Wood- Frame House Operated at Design Indoor Humidity Levels / C.A. Clausen [et al.], 2009.

Sheppard, K. Corrosiveness of Residential Thermal Insulation Materials under Simulated Service Conditions / K. Sheppard, R. Weil, A. Desjarlais // Insulation Materials, Testing and Applications. – ASTM International, 1990. – P. 634–653.

Comparisons of Several Accelerated Corrosiveness Test Methods for Thermal Insulating Materials / K. Sheppard [et al.] // Corros. Met. Under Therm. Insul. – 1985. – P. 220–230.

Nieminen, J. Hygrothermal performance of light steel-framed walls / J. Nieminen, M. Salonvaara, 2000. – 29 p.

Cellulose Insulation and Corrosion [Электронный ресурс].

Nielsen, B.L. Alternativ isolering – undgå byggeskader / B.L. Nielsen, L. Olsen, 2004. – 102 p.

Dahi, Z. Recyclingfähige Dämmstoffe aus Altpapier für Syrien : Dr.-Ing. Dissertation / Z. Dahi ; Universität Kassel, 2012. – 195 p.