ACCUMULATION OF RADIONUCLIDES IN REPLACEABLE PARTS AND WATER TARGET CYCLOTRON
Article Sidebar
Main Article Content
Abstract
The accumulation of unwanted long-lived radionuclides during the production of 18F-based radiopharmaceuticals using the IBA Cyclone 18/9 HC cyclotron is considered. Using high-resolution gamma-ray spectrometry with HPGe detectors, the identification of radionuclides and the assessment of activity in activated components (stripper, target entrance window) of the "medical" 18-MeV cyclotron IBA Cyclone 18/9 were carried out. More than 20 unwanted radionuclides have been identified in irradiated water. Various mechanisms for the entry of longlived radionuclides into irradiated water are described. The results obtained are of great importance for optimizing the methods of radioactive waste management in the production of radiopharmaceuticals and, as a result, minimizing the radiation exposure of personnel.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
S. VABISHCHEVICH, Polotsk State University
канд. физ.-мат. наук, доц.
D. BRINKEVICH, Belarusian State University, Minsk
канд. физ.-мат. наук
References
Papash, A. I., & Alenitskii, Yu. G. (2008). Kommercheskie tsiklotrony. Chast' 1. Kommercheskie tsiklotrony v diapazone energii ot 10 do 30 MeV dlya proizvodstva izotopov [Commercial cyclotrons. Part 1. Commercial cyclotrons in the energy range from 10 to 30 MeV for isotope production]. Fizika elementarnykh chastits i atomnogo yadra [Physics of Elementary Particles and Atomic Nuclei]: Vol. 39, iss 4 (1150–1214). (In Russ.).
Kodina, G. E., & Krasikova, R. N. (2014). Metody polucheniya radiofarmatsevticheskikh preparatov i radionuklidnykh generatorov dlya yadernoi meditsiny [Methods for obtaining radiopharmaceuticals and radionuclide generators for nuclear medicine]. Moscow: MEI. (In Russ.).
Ryzhov, S. A., Vodvatov, A. V., & Druzhinina, Yu. V. (2021). K voprosu o bezopasnosti personala v otdelenii yadernoi meditsiny. [On the issue of personnel safety in the nuclear medicine department]. In G. E. Kodina & A. A. Labushkina (Eds.) Aktual'nye problemy razrabotki, proizvodstva i primeneniya radiofarmatsevticheskikh preparatov: sb. tez. dokl. [Actual problems of development, production and use of radiopharmaceuticals] (54). Moscow: FMBC – FMBA. (In Russ.).
Brinkevich, S. D., Sukonko, O. G., Chizh, G. V., & Naumovich, A. S. (2013). Pozitronno-emissionnaya tomografiya. Chast' 1: Kharakteristika metoda. Poluchenie radiofarmpreparatov [Positron emission tomography. Part 1: Method description. Production of radiopharmaceuticals]. Mediko-biologicheskie problemy zhiznedeyatel'nosti [Medical and Biological Problems of Life Activity], (2), 129–137. (In Russ., abstr. in Engl.).
Sunderland, J. J., Erdahl, C. E., Bender, B. R., Sensoy, L., & Watkins, G. L. (2012). Consideration, measurements and logistics associated with low-energy cyclotron decommissioning. 14th Intern. Workshop on Targetry and Target Chemistry. AIP Conf. Proc: V. 1509. (16–20). DOI: 10.1063/1.4773931.
Brinkevich, D. I., Maliborski, A. Ya., & Brinkevich, S. D. (2019). Activation of the cooling circuit water of the Cyclone 18/9-HC cyclotron during the production of 18F. Physics of atomic nuclei, 82(12), 1714–1720. DOI: 10.1134/S1063778819120044.
Shiomi, T., Azeyanagi Y., Yamadera, A., & Nakamura, T. (2000). Measurements of residual radioactivity of machine elements and concrete on the cyclotron decommissioning. J. Nuclear Science Technology, (1), 357–361.
Brinkevich, S. D., Brinkevich, D. I., & Kiiko A. N. (2019). Aktivatsionnye radionuklidy pri obluchenii niobievoi misheni na tsiklotrone Cyclone 18/9 HC [Activation radionuclides during irradiation of a niobium target at the Cyclone 18/9 HC cyclotron]. Yadernaya fizika i inzhiniring [Nuclear Physics and Engineering], 10(6), 574–580. (In Russ., abstr. in Engl.).
Bowden, L., Vintro, L. L., Mitchell, P. I., O`Donnell, R. G., Seymour, A. M., & Duffy G. J. (2009). Radionuclide impurities in proton-irradiated [18O]H2O for the production of 18F-: Activities and distribution in the [18F]FDG synthesis process. Applied Radiation and Isotopes: Vol. 67. (248–255).
Kilian, K., Pegier, M., Pecal, A., & Pyrzynska, K. (2016). Distribution and separation of metallic and radionuclidic impurities in the production of 18F-fluorodeoxyglucose. J. of Radioanalytical and Nuclear Chemistry, 307(2), 1037–1043.
Avila-Rodriguez, M. A., Wilson, J. S., & McQuarrie S. A. (2008). A quantitative and comparative study of radionuclidic and chemical impurities in water samples irradiated in a niobium target with Havar vs niobium-sputtered Havar as entrance foils. Applied Radiation and Isotopes, 66(12), 1775–1780.
Schlyer, D. J., Firouzbakht, M. L., & Wolf, A. P. (1993). Impurities in the [18O]water target and their effect on the yield of an aromatic displacement reaction with [18F]fluoride. Applied Radiation and Isotopes, 44(12), 1459–1465.
Krot, V. O., Brinkevich, S. D., Brinkevich, D. I., & Ivanyukovich, A. A. (2021). Razdelenie dolgozhivushchikh radionuklidov na anionoobmennom kartridzhe QMA light pri proizvodstve radiofarmpreparatov na osnove 18F [Separation of long-lived radionuclides on a QMA light anion exchange cartridge in the production of radiopharmaceuticals based on 18F]. Radiokhimiya [Radiochemistry], 63(2), 193–200. (In Russ., abstr. in Engl.).
Brinkevich, S. D., Krot, V. O., Brinkevich, D. I., Tugai, O. V., Edimecheva, I. P., & Ivanyukovich, A. A. Pererabotka obluchennoi vody [18O]H2O v usloviyakh PET-tsentra [Processing of irradiated water [18O]H2O in a PET center]. Radiokhimiya [Radiochemistry], 61(4), 344–350.
Remetti, R., Burgio, N. T., Maciocco, L., Arcese, M., & Filannino, M. A. (2011). Monte Carlo simulation and radiometric characterization of proton irradiated [18O]H2O for the treatment of the waste streams originated from [18F]FDG synthesis process. Applied Radiation and Isotopes, 69, 1046–1051.
Dodd, A. C., Shackelton, R. J., Carr, D. A., & Ismail, A. (2017). Activation of air and concrete in medical isotope production facilities. AIP Conference Proceedings: Vol. 1845. DOI: 10.1063/1.4983537.
Krot, V. O., Tugai, O. V., Brinkevich, D. I., Brinkevich, S. D., Chizh, G. V., & Vabishchevich, S. A. (2018). Obrashchenie s vodnymi radioaktivnymi otkhodami pri proizvodstve radiofarmpreparatov na osnove 18F [Handling of aqueous radioactive waste in the production of radiopharmaceuticals based on 18F]. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya C, Fundamental'nye nauki [Herald of Polotsk State University. Series С. Fundamental sciences], (4), 128–134.
Tylets, P. V., Tugai, O. V., Krot, V. O., Ivanyukovich, A. A., Soroka, S. A., Brinkevich, D. I., … Chizh, G. V. (2018). Dolgozhivushchie radionuklidy pri proizvodstve [18F]ftorkholina dlya PET-diagnostiki [Long-lived radionuclides in the production of [18F]fluorocholine for PET-diagnosis]. Izvestiya Natsional'noi akademii nauk Belarusi. Seriya khimicheskikh nauk [Proceedings of the National Academy of Sciences of Belarus, Chemical Series], 54(3), 359–368. DOI: 10.29235/1561-8331-2018-54-3-359-368.
Marshall, C., Talboys, M. A., Bukhari, S., & Evans, W. D. (2014). Quantification of the activity of tritium produced during the routine synthesis of 18F fluorodeoxyglucose for positron emission tomography. J. Radiological Protection, 34(2), 435–444. DOI: 10.1088/0952-4746/34/2/435.
Mochizuki, S., Ogata, Y., Natano, K., Abe, J., Ito, K., Ito, Y., … Ishigure, N. (2006). Measurement of the induced radionuclides in production of radiopharmaceuticals for positron emission tomography (PET). J. Nuclear Science and Technology, 43(4), 348–353.
Kohler, M., Degering, D., Zessin, J., Fuchtner, F., & Konheiser, J. (2013). Radionuclide impurities in [18F]F- and [18F]FDG for positron emission tomography. Applied Radiation and Isotopes, (81), 268–271. DOI: 10.1016/j.apradiso.2013.03.044.
Wilson, J. S., Avila-Rodriquez, M. A., Johnson, R. R., Zyuzin, A., & McQuarrie, S. A. (2008). Niobium sputtered Havar foil for the high-power production of reactive [18F]fluoride by proton irradiation of [18O]H2O targets. Applied Radiation and Isotopes, (66), 565–570.
Marengo, M., Lodi, F., Magi, S., Cicoria, G., Pancaldi, D., & Boschi, S. (2008). Assessment of radionuclidic impurities in 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) routine production. Applied Radiation and Isotopes, 66(3), 295–302.
Ferguson, D., Orr, P., Gillanders, J., Corrigan, G., & Marshall, C. (2011). Measurement of long lived radioactive impurities retained in the disposable cassettes on the Tracerlab MX system during the production of [18F]FDG. Applied Radiation and Isotopes, 69(10), 1479–1485. DOI: 10.1016/j.apradiso.2011.05.028.
O’Donnell, R. C., Leon Vintro, I., Duffy, C. J., & Mitchell, P. I. (2004). Measurement of the residual radioactivity induced in the front foil of a target assembly in a modern medical cyclotron. Applied Radiation and Isotopes, 60(2–4), 539–542.
Dziel, T., Tyminski, Z., Sobczyk, K., Walecka-Mazur, A., & Kozanecki, P. (2016). Radionuclidic purity tests in 18F radiopharmaceuticals production process. Applied Radiation and Isotopes, 109(2), 242–246.
Ito, S., Sakane, H., Deji, S., Saze, T., & Nishizawa, K. (2006). Radioactive byproducts in [18O]H2O used to produce 18F for [18F]FDG synthesis. Applied Radiation and Isotopes, 64(3), 298–305.
Vabishchevich, S. A., Vabishchevich, N. V., Brinkevich, D. I., Brinkevich, S. D., & Nevzorov, D. I. (2019). Plenki piroliticheskogo grafita, obluchennogo ionami vodoroda N- [Films of pyrolytic graphite irradiated with hydrogen ions H-]. Vzaimodeistvie izluchenii s tverdym telom. [Interaction of radiation with a solid body] (43–45). Minsk: Publ. BSU. (In Russ., abstr. in Engl.).
Guarino, P., Rizzo, S., Tomarchio, E., & Greco, D. (2007). Gamma-ray spectrometric characterization of waste activated target components in a PET cyclotron. Cyclotrons and Their Applications–2007 (295–297). Giardini Naxos, Italy.
Palmieri, V., Azzolini, O., Bempozad, E., De Felicis, D., Johnson, R.R., Renzelli, M., & Scliarova, H. (2019). Influence of the microstructure on the diffusion barrier performance of Nb-based coatings for cyclotron targets. J. Vacuum Science & Technology, 37(5). DOI: 10.1116/1.5098168.
Chávez, J. C., Vargas, M. J., & Sánchez R. (2016). Measurement of activation products generated in the [18F]FDG production by a 9.6 MeV cyclotron. Radiation Physics and Chemistry, (126), 32–36. – DOI: 10.1016/j.radphyschem.2016.05.006.
Metzger, R. L., Lasche, G. P., Eckerman, K. F., & Leggett R. W. (2018). Long-lived contaminants in cyclotron-produced radiopharmaceuticals: measurement and dosimetry. J. Radioanalytical and Nuclear Chemistry, (318), 7–10. DOI: 10.1007/s10967-018-5970-6.
Makarov, S. P., Pik-Pichak, G. A., Rodionov, Yu. F., Khmyzov, V. V., & Yashin, Yu. A. (1991). Sechenie reaktsii 54Fe(n,α)51Cr na teplovykh neitronakh [Cross section of the reaction 54Fe(n,α)51Cr on thermal neutrons]. Atomnaya energiya [Atomic Energy], 70(3), 194–106. (In Russ., abstr. in Engl.).
Brinkevich, D. I., Brinkevich, S. D., Baranovskii, O. A., Chizh, G. V., & Ivanyukovich, A. A. (2018). Dolgozhivushchie radionuklidy v proizvodstve 2-[18F]ftordezoksiglyukozy [Long-lived radionuclides in the production of 2-[18F]fluorodeoxyglucose.]. Meditsinskaya fizika [Medical physics], 1(77), 80–88.
Alloni, D., Prata, M., & Smilgys B. (2019). Experimental and Monte Carlo characterization of radionuclidic impurities originated from proton irradiation of [18O]H2O in a modern medical cyclotron. Applied Radiation and Isotopes, (146), 84–89. DOI: 10.1016/j.apradiso.2019.01.026.
Didyk, A. Yu., Latyshev, S. V., Semina, V. K. Stepanov, A.E., Suvorov, A. L., Fedotov, A. S., & Cheblukov, Yu. N. (2000). Issledovanie vozdeistviya ionov kriptona s energiei 305 MeV na vysokoorientirovannyi piroliticheskii grafit [Investigation of the effect of krypton ions with an energy of 305 MeV on highly oriented pyrolytic graphite.]. Pis'ma v Zhurnal tekhnicheskoi fiziki [Technical Physics Letters], 26(17), 1–5. (In Russ., abstr. in Engl.).
Aygun, M., Cesur, A., Dogru, M., Boztosun, I., Dapo, H., Kanarya, M., … Karatepe, S. (2016). Using a clinical linac to determine the energy levels of 92mNb via the photonuclear reaction. Applied Radiation and Isotopes, 115(1), 97–99.
Gillis, J. M., Najim, N., & Zweit, J. (2006). Analysis of metal radioisotope impurities generated in [18O]H2O during the cyclotron production of fluorine-18. Applied Radiation and Isotopes, 64(3), 431–434.
Ivanyukovich, A. A., Soroka, S. A., Krot, V. O., Brinkevich, D. I., Brinkevich, S. D., Chizh, G. V., & Sverdlov, R. L. (2018). Ochistka [18F]ftorida ot dolgozhivushchikh radionuklidov pri proizvodstve [18F]ftordezoksiglyukozy [Purificationof [18F]fluoride from long-lived radionuclides in the production of [18F]fluorodeoxyglucose]. Meditsinskaya fizika [Medical Physics], 4(80), 59–65. (In Russ., abstr. in Engl.).
Ivanov, S. N., Porollo, S. I., & Dvoryashin, A. M. (2006). Vliyanie vysokodoznogo neitronnogo oblucheniya na sklonnost' k mezhkristallitnoi korrozii austenitnoi nerzhaveyushchei stali 12Х18Н9Т. Voprosy atomnoi nauki i tekhniki. Ser. Materialovedenie i novye materialy, (2), 222–228. (In Russ.).
Most read articles by the same author(s)
- S. VABISHCHEVICH, N. VABISHCHEVICH, D. BRINKEVICH, V. PROSOLOVICH, Y. YANKOVSKI, STUDY OF STRENGTH PROPERTIES OF PHOTORESIST FILMS ON SILICON BY THE SCRATCHING METHOD, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2015)
- D. BRINKEVICH, V. PROSOLOVICH, V. KOLOS, O. ZUBOVA, S. VABISHCHEVICH, INFRARED FOURIER SPECTROSCOPY OF DIFFUSE REFLECTION OF THE AZ nLOF SERIES NEGATIVE PHOTORESISTS FILMS ON MONOCRYSTALLINE SILICON, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 2 (2024)
- S. VABISHCHEVICH, N. VABISHCHEVICH, D. BRINKEVICH, V. PROSOLOVICH, STRENGTH PROPERTIES OF DIAZOQUINONE PHOTORESIST FP9120 FILMS ON MONOCRYSTALLINE SILICON IMPLANTED WITH ANTIMONY IONS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 2 (2024)