LOCALIZATION OF NITROGEN ATOMS IN Si–SiO2 STRUCTURES

Main Article Content

V. ODZAEV
U. PRASALOVICH
A. PYATLITSKI
N. KOVALCHUK
Ya. SOLOVIEV
D. ZHIGULIN
D. SHESTOVSKI

Abstract

Studies have been carried out by time-of-flight mass spectroscopy of secondary ions of subcutaneous silicon oxides, nitridation by ion implantation (II) or nitrided by high-temperature annealing in an atmosphere of N2. Nitrogen AI was produced with an energy of 40 keV, implantation doses of 2,5×1014 and 1×1015 cm-2. High-temperature annealing was carried out at a temperature of 1200 oC for 2 hours or at 1100 oC for 30 minutes. It is established that at the Si–SiO2 interface, after nitriding by II or high-temperature annealing, a maximum with a high concentration of nitrogen atoms is observed. It is shown that after conducting nitrogen AI with a dose of 2,5 ×1014 cm-2 through a protective SiO2 with a thickness of 23 nm and RTA at 1000 oC for 15 seconds, the main maximum of nitrogen distribution (1×1019 cm-3) is observed at the Si–SiO2 interface, which indicates the presence of a saturation concentration of the Si–SiO2 interface. A charge-based one-dimensional Fermi model is proposed to describe the accelerated diffusion of nitrogen atoms. The main mechanism is the diffusion of interstitial atoms, which can occur with the preliminary displacement of nodal nitrogen atoms by their own embedding atoms. It is shown that nitrogen atoms can act as annihilation centers of point defects in the silicon crystal lattice.

Article Details

How to Cite
ODZAEV, V., PRASALOVICH, U., PYATLITSKI, A., KOVALCHUK, N., SOLOVIEV, Y., ZHIGULIN, D., & SHESTOVSKI, D. (2022). LOCALIZATION OF NITROGEN ATOMS IN Si–SiO2 STRUCTURES. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (11), 65-79. https://doi.org/10.52928/2070-1624-2022-39-11-65-79
Section
Physics
Author Biographies

V. ODZAEV, Belarusian State University, Minsk

д-р физ.-мат. наук, проф.

U. PRASALOVICH, Belarusian State University, Minsk

канд. физ.-мат. наук, доц.

A. PYATLITSKI, "INTEGRAL” Joint Stock Company, Minsk

канд. физ.-мат. наук, доц.

N. KOVALCHUK, "INTEGRAL” Joint Stock Company, Minsk

канд. техн. наук, доц.

Ya. SOLOVIEV, "INTEGRAL” Joint Stock Company, Minsk

канд. физ.-мат. наук, доц.

References

Quinn, C. A., Dalal, D. B. (2017). Empowering the electronics industry: A power technology roadmap. CPSS Transactions on Power Electronics and Applications, 2(4), 306–319. DOI: 10.24295/CPSSTPEA.2017.00028.

Baliga, B. J. (2010). Advanced power MOSFET concepts. New York: Springer Science + Business Media, DOI: 10.1007/978-1-4419-5917-1.

Odzhaev, V. B., Petlitskii, A. N., Prosolovich, V. S., Turtsevich, A. S., Shvedov, S. V., Filipenya, V. A., …, Dubrovskii, V. A. (2014). Vliyanie tekhnologicheskikh primesei na elektrofizicheskie parametry MOP-tranzistora [Influence of technological impurities on electrical parameters of MOS-transistor]. Izvestiya Nacional`noj akademii nauk Belarusi. Seriya fiziko-texnicheskix nauk [Proceedings of the National Academy of Sciences of Belarus. Physical -technical series], (4), 14–17. (In Russ., abstr. in Engl.). https://rep.bntu.by/handle/data/49430.

Gusev, E. P., Lu, H. С., Garfunkel, E. L., Gustafsson, T., & Green, M. L. (1999). Growth and characterization of ultrathin nitrided silicon oxide films. IBM Journal of Research and Development, 43(3), 265–286. DOI: 10.1147/rd.433.0265.

Krasnikov, G. Ya. (2011). Konstruktivno-tekhnologicheskie osobennosti submikronnykh MOP-tranzistorov [Structural and technological features of submicron MOS transistors]. Moscow: TEXNOSFERA. (In Russ.)

Odzhaev, V. B., Panfilenko, A. K., Petlitskii, A. N., Prosolovich, V. S., Koval'chuk, N. S., Solov'ev, Ya. A., … Shestovskii, D. V. (2020). Vliyanie ionnoi implantatsii azota na elektrofizicheskie svoistva podzatvornogo dielektrika silovykh MOP-tranzistorov [Influence of nitrogen ion implantation on the electrophysical properties of the gate dielectric of power MOS transistors]. Zhurnal Belorusskogo gosudarstvennogo universiteta. Fizika [Journal of the Belarusian State University. Physics], (3), 55–64. (In Russ., abstr. in Engl.).

Voronkova, G. I., Batunina, A. V., Voronkov, V. V., Golovina, V. N., Gulyaeva., A. S., Tyurina, M. G., & Mil'vidskii, N. B. (2009). Vliyanie otzhiga na elektricheskie svoistva legirovannykh azotov monokristallov kremniya, vyrashchennykh metodom bestigel'noi zonnoi plavki. Fizika tverdogo tela [Influence of annealing on the electrical properties of doped nitrogen silicon single crystals grown by crucibleless zone melting] [Solid State Physics], 51(11), С. 2128–2134. (In Russ.)

Nishi, Y., & Doering, R. (2008). Handbook of semiconductor manufacturing technology. Воса Raton: CRC press.

Nam, I.-H. (2000). Annealing Effects on QBD of Ultra-Thin Gate Oxide Grown on Nitrogen Implanted Silicon. Journal of the Institute of Electronics Engineers of Korea, 37(3), 6–13.

Josquin, W. (1983). The application of nitrogen ion implantation in silicon technology. Nuclear Instruments and Methods in Physics Research, (209), 581–587. DOI: https://doi.org/10.1016/0167-5087(83)90855-4.

Korolev, M. A., Krupkina, T. Yu., & Reveleva, M. A. (2015). Tekhnologiya, konstruktsii i metody modelirovaniya kremnievykh integral'nykh mikroskhem: v 2 ch. Ch. 1: Tekhnologicheskie protsessy izgotovleniya kremnievykh integral'nykh skhem i ikh modelirovanie [Technology, designs and modeling methods for silicon integrated circuits (in 2 part. Part 1: Technological processes of manufacturing silicon integrated circuits and their modeling)]. In Yu. A. Chaplygin (Eds.). Moscow: BINOM. Laboratoriya znanij. (In Russ.)

Lee, W.-C., Lee, S.-G., & Chang, K.-J. (1998). First-principles study of the self-interstitial diffusion mechanism in silicon. Journal of Physics: Condensed Matter, 10(5), 995–1002. DOI: 10.1088/0953-8984/10/5/009.

Adam, L. S., Law, M. E., Dokumaci, O., & Hegde, S. (2000). A physical model for implanted nitrogen diffusion and its effect on oxide growth. In International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138) (507–510). DOI: 10.1109/IEDM.2000.904366.

Adam, L. S., Bowen, C., & Law, M. E. (2003). On implant-based multiple gate oxide schemes for system-on-chip integration. IEEE Transactions on Electron Devices, 50(3), 589–600. DOI: 10.1109/TED.2003.810473.

Tokmoldin, S. Zh., Mukashev, B. N., Gorelkinskii, Yu. V., & Nevinnyi, N. N. (1983). Opredelenie energeticheskogo polozheniya Si-B3-tsentra v obluchennom kremnii [Determination of the energy position of the Si-B3 center in irradiated silicon]. Fizika i tekhnika poluprovodnikov [Soviet physics. Semiconductors], 17(6), 1166. (In Russ.)

Pavlov, P. V., Zorin, E. I, Tetelbaum, D. I., & Khokhlov, A. F. (1976). Nitrogen as dopant in silicon and germanium. Physica status solidi (a), 35(1), 11–36. DOI: 10.1002/pssa.2210350102.

Chelyadinskij, A. R., & Odzhaev, V. B. (2011). Effekt Votkinsa v poluprovodnikakh. Yavlenie i prilozheniya v mikroelektronike [Watkins effect in semiconductors. Phenomenon and applications in microelectronics]. Vestnik BGU. Ser. 1, Fizika. Matematika. Informatika [Bulletin of BSU. Series 1, Physics. Mathematics. Computer science], 1(3), 11–17. (In Russ., abstr. in Engl.).

Chelyadinskii, A. R., Yavid, V. Yu., & Vengerek, P. (2003). Nakoplenie radiatsionnykh defektov v kremnii pri implantatsii ionov azota [Accumulation of radiation defects in silicon during implantation of nitrogen ions]. In Vzaimodeistvie izluchenii s tverdym telom [Interaction of radiation with solids] (206–208). Minsk: Publ. BSU. (In Russ.)

Dokumaci, O., Ronsheim, P., Hegde, S., Chidambarrao, D., Shaik-Adam, L., & Law, M. (1999). Effect of Nitrogen Implants on Boron Transient Enhanced Diffusion. MRS Online Proc. Library, 610. DOI: 10.1557/PROC-610-B5.9.

Park, H., Ilderem, V., Jasper, C., Kaneshiro, M., Christiansens, J., & Jones, K. (1997). The effects of implanted nitrogen on diffusion of boron and evolution of extended defects. MRS Online Proceedings Library, (469), 425–430. DOI: 10.1557/PROC-469-425.

Vavilov, V. S., Kiv, A. E., & Niyazova, O. R. (1981). Mekhanizmy obrazovaniya i migratsii defektov v poluprovodnikakh [Mechanisms of formation and migration of defects in semiconductors]. Moscow: Nauka. (In Russ.)

Pichler, P. (2004). Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon. In S. Selberherr (Eds.), Computational Microelectronics. Vienna: Springer Vienna.

Chelyadinskii, A. R., & Komarov, F. F. (2003). Defektno-primesnaya inzheneriya v implantirovannom kremnii [Defectimpurity engineering in implanted silicon]. Uspekhi fizicheskikh nauk [Physics-Uspekhi], 173(8), 813–846.

Schreutelkamp, R. J., Custer, J. S., Liefting, J. R., Lu, W. X., & Saris F. W. (1991). Pre-amorphization damage in ionimplanted silicon. Materials Science Reports, 6(7), 275–366.

Tamura, M., & Suzuki, T. (1989). Damage formation and annealing of high energy ion implantation in Si. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 39(1), 318–329. DOI: 10.1016/0168-583X(89)90795-7.

Cowern, N. E. B., van de Walle, G. F. A., Zalm, P. C. D., & Vandenhoudt, W. E. (1994). Mechanisms of implant damage annealing and transient enhanced diffusion in Si. Applied Physics Letters, 65(23). DOI: 10.1063/1.112483.

Zographos, N., Zechner, C., & Avci, I. (2007). Efficient TCAD Model for the Evolution of Interstitial Clusters, {311} Defects, and Dislocation Loops in Silicon. MRS Online Proceedings Library, (994). DOI: 10.1557/PROC-0994-F10-01.

Komarov, F. F., Dzhadan, M., Gaiduk, P. I., Chelyadinskii, A. R., Yavid, V. Yu., Zhukovskii, P. V., Partyka, Ya., Vengerek, P. (2004). Ostatochnye defekty v kremnii, implantirovannom ionami bora i fosfora [Residual defects in silicon implanted with boron and phosphorus ions]. Fizika i khimiya obrabotki materialov [Physics and chemistry of material processing], (4), 33–36. (In Russ., abstr. in Engl.).

Adam, L.S., Law, M. E., Dokumaci, O., Haddara, Ya., Murthy, Ch., Park, H., … Srinivasan, R. (1999). Nitrogen implantation and diffusion in silicon. MRS Online Proceedings Library, (568), 277–281. DOI: 10.1557/PROC-568-277.

Saleh, H., Mark, M. E., Bharatan, L. S., Kevin S., Jones, K. S., Krishnamoorthy, W., & Buyuklimanli, T. (2011). Energy Dependence of Transient Enhanced Diffusion and {311} Defect Kinetics. MRS Online Proceedings Library, (610). DOI: 10.1557/PROC-610-B6.7.

Pilipenko, V. A. (2004). Bystrye termoobrabotki v tekhnologii SBIS [Faster heat treatment in VLSI technology]. Minsk: Publ. BSU. (In Russ.).

Liu, X. H., Peng, H. J., Wong, S. P., & Shounan, Z. (2004). Stress Distribution in Ultra Thin SiO2 Film/Si Substrate System Measured by a Low Level Birefringence Detection Technique. MRS Online Proceedings Library, (821), 24–29. DOI: 10.1557/PROC-821-P8.8.

Aziz, M. J. (1998). Pressure and stress effects on diffusion in Si. Defect and Diffusion Forum, (153), 1–10. DOI: 10.4028/www.scientific.net/ddf.153-155.1.

Kwok, C. T. (2005). A method for quantifying annihilation rates of bulk point defects at surfaces. Journal of applied physics, 98(1). DOI: 10.1063/1.1946195.