SPATIAL-TEMPORAL INHOMOGENEITIES AT THE PHASE BOUNDARY OF HIGH-SPEED CRYSTALLIZATION OF A UNDERCOOLED MELT

Main Article Content

O. SHABLOVSKY
D. KROLL

Abstract

The object of study is the growth line of a free dendrite in a undercooled melt of a pure substance. The perturbed state of the growth line at a finite distance from the top of the dendrite has been studied. It is in this part of the crystallization front that the appearance of side branches is observed. Two main variants are considered: aperiodic and coordinate-periodic background, along which the perturbation wave propagates. An important role of the characteristic size of the zone of spatial inhomogeneity of the background is revealed, and quantitative estimates of the threshold values of this size are given. The dependences of the wave velocity on the angle of sharpening of the growth line and on the width of the inhomogeneity zone are studied. Examples are given demonstrating that the direction of wave movement (from the top to the periphery or from the periphery to the top) affects the morphological stability/instability of the growth line. The properties of the perturbation damping parameter are studied in detail. Numerical modeling of the properties of the growth process was performed for nickel and copper melts at undercoolings equal to 160 K and 180 K respectively. The result of the calculations is the correlation "wave speed – taper angle – size of the inhomogeneity zone", "attenuation parameter – taper angle". The presented graphical information demonstrates quantitative differences in the growth properties of nickel and copper dendrites.

Article Details

How to Cite
SHABLOVSKY, O., & KROLL, D. (2023). SPATIAL-TEMPORAL INHOMOGENEITIES AT THE PHASE BOUNDARY OF HIGH-SPEED CRYSTALLIZATION OF A UNDERCOOLED MELT. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (1), 56-64. https://doi.org/10.52928/2070-1624-2023-40-1-56-64
Section
Электрофизика, электрофизические установки (технические науки)
Author Biographies

O. SHABLOVSKY, Sukhoi State Technical University of Gomel

д-р физ.-мат. наук, проф.

D. KROLL, Sukhoi State Technical University of Gomel

канд. физ.-мат. наук, доц.

References

Brener, E. A., Mel’nikov, V. I. (1991). Pattern selection in two-dimensional dendritic growth. Advances in Physics, 40(1), 53–97. DOI: 10.1080/00018739100101472.

Mullis, A. M. (2015). Deterministic side-branching during thermal dendritic growth IOP Conf. Series: Materials Science and Engineering, (84), 1–9. DOI: 10.1088/1757-899X/84/1/012071.

Glicksman, M. E. (2016). Capillary-mediated interface perturbations: Deterministic pattern formation. J. of Crystal Growth, 450, 119–139. DOI: 10.1016/j.jcrysgro.2016.03.031.

Strickland, J., Nenchev, B. (2020). On Directional Dendritic Growth and Primary Spacing – A Review. Crystals, 10(7), 627–656. DOI: 10.3390/cryst10070627.

Kurz, W., Rappaz, M., & Trivedi, R. (2021). Progress in modeling solidification microstructures in metals and alloys. Part II: dendrites from 2001 to 2018. Int. Mater. Rev., 66(1), 30–76. DOI: 10.1080/09506608.2020.1757894.

Shablovskii, O. N., & Krol', D. G. (2022). Dinamika neustoichivosti volnovykh vozmushchenii i bokovoe vetvlenie dendrita v pereokhlazhdennom rasplave [Dynamics of instability of wave disturbances and lateral branching of a dendrite in a supercooled melt]. Uspehi prikladnoj fiziki [Advances in Applied Physics], (2), 189–202. https://elibrary.ru/item.asp?id=48451163. (In Russ., abstr. in Engl.).

Wang, X., Li, K., Qin, X., Li, M., Liu, Y., An, Y., … Gong, J. (2022). Research on Mesoscale Nucleation and Growth Processes in Solution Crystallization: A Review. Crystals, (12), 1234–1255. DOI: 10.3390/cryst12091234.

Shablovskii, O. N. (2012). Morfologicheskie svoistva linii rosta dvumernogo dendrita v pereokhlazhdennom rasplave [Morphological properties of the growth line of a two-dimensional dendrite in a supercooled melt. Prikladnaya fizika [Applied Physics], (4), 40–46. https://www.elibrary.ru/item.asp?id=17913532. (In Russ., abstr. in Engl.).

Herlach, D. M., Galenko, P., Holland-Moritz, D. (2007). Metastable Solids from Undercooled Melts. Oxford: Pergamon.

Polyanin, A. D., Vyaz'min, A. V., Zhurov, A. I., & Kazenin, D. A. (1998). Spravochnik po tochnym resheniyam uravnenii teploi massoperenosa [Handbook on the exact solutions of heat and mass transfer equations]. – Moscow: Faktorial. (In Russ.)