PROSPECTS AND TENDENCIES OF DEVELOPMENT OF THE BIG DATA CONCEPT IN MODERN IT INDUSTRY

Main Article Content

S. SURTO

Abstract

Big data in 2019 continue to gain popularity. The structured or raw, big data represent huge information massifs which at due processing can be a source of a bigger information. Volumes of the stored data in different spheres and also growth rates of speed of accumulation say that the relevance of methods of storage and information processing of large volumes will only grow. The traditional industries have also not avoided influence of the growing volume of data which need to be processed.

Article Details

How to Cite
SURTO, S. (2019). PROSPECTS AND TENDENCIES OF DEVELOPMENT OF THE BIG DATA CONCEPT IN MODERN IT INDUSTRY. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (4), 26-31. Retrieved from https://journals.psu.by/fundamental/article/view/402

References

Schmarzo, B. Big Data: Understanding How Data Powers Big Business / B. Schmarzo. – М. : Wiley, 2013. – 240 c.

Frank, J.O. Big Data Analytics: Turning Big Data into Big Money (Wiley and SAS Business Series) / J.O. Frank – М. : Гостехиздат, 2012. – 176 c.

Prajapati, V. Big Data Analytics with R and Hadoop / V. Prajapati. – М., 2013. – 238 c.

Mayer-Schonberger, V. Big Data: Revolution That Will Transform How We Live, Work and Think / V. Mayer-Schonberger, K. Cukier. – Canada : Eamon Dolan/Houghton Mifflin Harcourt, 2013. – 242 p.

Dean, J. MapReduce: Simplfied Data Processing on Large Clusters / J. Dean, S. Ghemawat // In Sixth Symposium on Operating System Design and Implementation (OSDI'04), San-Francisco, CA, December, 2004.

Lammel, R. Google’s MapReduce Programming Model – Revisited / R. Lammel // Science of Computer Programming. – Amsterdam, 2018. – 30 p.

Ghemawat, S. The Google file system / Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung // SOSP '03 Proceedings of the nineteenth ACM symposium on Operating systems principles, Bolton Landing, NY, USA, October 19–22, 2003. – Bolton Landing, 2003. – P. 29–43.

Zikopoulos, P. Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data / P. Zikopoulos, C. Eaton. – New York : McGraw-Hill Osborne Media, 2012. – 166 p.

Gorodetsky, V. Data-driven Semantic Concept Analysis for User Profile Learning in 3G Recommender Systems / V. Gorodetsky, O. Tushkanova // 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT) : Conference. – Singapore, 2015. – P. 92–97.

Hybrid Evolutionary Workflow Scheduling Algorithm for Dynamic Heterogeneous Distributed Computational Environment / D. Nasonov [et al.] // International Joint Conference SOCO’14-CISIS’14-ICEUTE’14, Bilbao, Spain, June 25th-27th, 2014. – С. 83–92.

Тушканова, О.Н. Сравнительный анализ численных мер оценки ассоциативных и причинных связей в больших данных / О.Н. Тушканова // Перспективные системы и задачи управления : материалы 10-й Всероссийской научно-практической конференции, Домбай, 6–10 апр. 2015 г., / ЮФУ. – Домбай, 2015. – Т. 2. – C. 54–65.

Atre, S. Business Intelligence Roadmap: The Complete Project Lifecycle for Decision-Support Applications / Shaku Atre, Larissa T. Moss. – Boston : Addison-Wesley Professional, 2003. – 576 p.