THE RECKONING OF GRAVITATIONAL WAVE DETECTOR SIGNAL INTRODUCING OSCILLATING REFLECTIVE MIRRORS

Main Article Content

I. OHRYMENKO
N. KOLCHEVSKY
P. PETROV

Abstract

The gravitational wave detector with movable mirrors is studied. Operating ground-based detectors (LIGO, etc.) contain reflecting mirrors isolated from vibrations of any kind. However, the mirrors are not static and on the contrary, they are placed in the system of a 4-stage pendulum with a long oscillation period. A model of a GW detector with mirrors oscillating for various functional dependences is proposed. The “LIGO-RM” software has been developed and is available for the numerical simulation of a new type detector. A number of the signal calculations of the gravitational wave detector with oscillating mirrors have been performed using the LIGO-RM program. The parameters used for the calculation are presented and the results of the numerical simulation are discussed.

Article Details

How to Cite
OHRYMENKO, I., KOLCHEVSKY, N., & PETROV, P. (2020). THE RECKONING OF GRAVITATIONAL WAVE DETECTOR SIGNAL INTRODUCING OSCILLATING REFLECTIVE MIRRORS. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (12), 70-76. Retrieved from https://journals.psu.by/fundamental/article/view/463
Author Biography

N. KOLCHEVSKY, Belarusian State University, Minsk

канд. физ.-мат. наук, доц.

References

The Nobel Prize : The Nobel Prize in Physics 2017 [Electronic resource]. – Mode of access: https://www.nobelprize.org/prizes/physics/2017/summary/. – Date of access: 12.12.2019.

KAGRA Observatory News : KAGRA Gravitational-wave Telescope Starts Observation [Electronic resource]. – Mode of access: https://gwcenter.icrr.u-tokyo.ac.jp/en/archives/1381. – Date of access: 25.02.2020.

Multi-messenger Observations of a Binary Neutron Star Merger / B. P. Abbott [et al.] // The Astrophysical Journal Letters. – 2017. – Vol. 848, No. 2. – 59 p.

Observation of Gravitational Waves from a Binary Black Hole Merger / B.P. Abbot [et al.] // Phys. Rev. Let. – 2016. – Vol. 116, iss. 6. – 061102.

Poincare, H. Sur la dynamique de l'électron / H. Poincare // Rend. Circ. Mat. Palermo. – 1906. – Vol. 21, ser. 1. – P. 129–176.

Weber, J. Gravitational-wave-detector events / J. Weber // Phys. Rev. Let. – 1968. – Vol. 20, iss. 23. – P. 1307–308.

Gertsenshtein, M.E. On the detection of low frequency gravitational waves / M.E. Gertsenshtein, V.I. Pustovoit, // JETP. – 1962. – Vol. 43, No. 2. – P. 605–607.

Exploring the sensitivity of next generation gravitational wave detectors / B.P. Abbott [et al.] // Class. Quantum Grav. – 2017. – Vol. 34, No. 4. – 044001.

Advanced LIGO : LIGO Scientific Collaboration / LIGO – Livingston : Laser Interferometer Gravitational-Wave Observatory, 2014 [Electronic resource]. – Mode of access: https://arxiv.org/ftp/arxiv/papers/1411/1411.4547.pdf. – Date of access: 1.01.2020.

LIGO NEWS : LIGO Suspends Third Observing Run (O3) [Electronic resource]. – Mode of access: https://www.ligo.caltech.edu/news/ligo20200326. – Date of access: 1.04.2020.

Sensitivity studies for third-generation gravitational wave observatories / S. Hild [et al.] // Class. Quantum Grav. – 2011. – Vol. 28, No. 9. – 094013.

Laser Interferometer Space Antenna : A proposal in response to the ESA call for L3 mission concepts / Albert Einstein Institute ; K. Danzmann [et al.]. – Hannover, 2017. – 41 p.

NGO, Revealing a hidden Universe: opening a new chapter of discovery (New Gravitational wave Observatory) : Assessment Study Report / European Space Agency ; O. Jenrich [et al.]. – Paris, 2011. – 153 p. – № ESA/SRE (2011) 19.

The Japanese space gravitational wave antenna – DECIGO / S. Kawamura [et al.] // J. Phys.: Conf. Ser. – 2008. – Vol. 122. – 012006.

Laser interferometry for the Big Bang Observer / G.M. Harry [et al.] // Class. Quantum Grav. – 2006. – Vol. 23. – P. 4887–4894.

Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO / D. Reitze [et al.] // Bulletin of the American Astronomical Society. – 2019. – Vol. 51, iss. 7, id. 35.

Yagi, K. Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries / K. Yagi, N. Seto // Phys. Rev. D. – 2011. – Vol. 83. – 20 p.

Laser Interferometer Gravitational Wave Observatory. Instrument Science White Paper : LIGO-T1600119–v4 : adopted 27.10.16. – Cambridge : Technical Note : LIGO Scientific Collaboration, 2016. – 116 p.

High frequency gravitational wave generator [Electronic resource] : pat. US 10,322,827 B2/ C. Salvatore, P. – Publ. date 18.01.2019. – Mode of access: https://pdfpiw.uspto.gov/.piw?docid=10322827&SectionNum=1&IDKey=59C80614D29C&HomeUrl=http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%2526Sect2=HITOFF%2526u=%25252Fnetahtml%25252FPTO%25252Fsearch-adv.htm%2526r=2%2526f=G%2526l=50%2526d=PTXT%2526p=1%2526S1=(2019$.PD.%252BAND%252B%252522LIGO%252522)%2526OS=ISD/2019%252BAND%252B%252522LIGO%252522%2526RS=(ISD/2019%252BAND%252B%252522LIGO%252522). – Date of access: 01.02.2020.