PROTECTION OF POLIGRAPHIC PRODUCTS USING DIGITAL WATERMARKS
Article Sidebar
Main Article Content
Abstract
The article proposes algorithms for steganographic embedding and extraction of digital watermarks (DWM) embedded in the digital original of printed products in order to protect copyrights to them. The built-in digital image is resistant to distortions introduced into images during printing and scanning and is not visually noticeable. The resistance of the extraction algorithm to geometric distortions is achieved through the use of an algorithm for restoring the original geometry of the image by comparing the special points of the distorted copy of the container image and the original image. The results of testing the robustness of the algorithm both to simulated distortions of the printing and scanning channel, and to distortions introduced into images when using real printing and scanning devices are presented. The impact of the embedding process on image quality is also considered.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
V. SADOV, Belarusian State University, Minsk
канд. техн. наук, доц.
References
Mitekin, V. A., Sergeev, A. V., Fedoseev, V. A., & Bogomolov, D. M. (2007). Modeli steganograficheskoj sistemy i obobshhennogo algoritma vstraivanija CVZ v poligraficheskie izdelija [Steganography system model and the generalized algorithm embedding a digital watermark in printing products]. Komp'juternaja optika [Computer optics], 31(4), 95–100. (In Russ.).
Gribunin, V. G., Okov, I. N., & Turincev, I. V. (2009). Cifrovaja steganografija [Digital steganography]. Moscow: Solon-Press. (In Russ.).
Glumov, N. I., Mitekin, V. A., Sergeev, A. V., & Fedoseev, V. A. (2008). Algoritm izvlechenija skrytoj informacii iz otskanirovannyh poligraficheskih izdelij [An algorithm for extracting invisible information from scanned polygraphic products]. Vestnik SGAU [Herald of Samara State Aerospace University], 2(15), 216–220. (In Russ.).
Gruzman, I. S., Kirichuk, V. S., Kosyh, V. P., Peretjagin, G. I., & Spektor, A. A. (2000). Cifrovaja obrabotka izobrazhenij v informacionnyh sistemah [Digital image processing in information systems]. Novosibirsk: NGTU (In Russ).
Lin, C. Y., & Chang, S. F. (1999). Distortion modeling and invariant extraction for digital image print–and–scan process. Taipei. In International Symposium on Multimedia Information Processing. URL: https://www.ee.columbia.edu/ln/dvmm/publications/99/cylin-modelscan.pdf.
Shiffman H. R. (2003). Oshhushhenie i vosprijatie [Sensation and perception]. St.-Petersburg: Piter. (In Russ.).
Loeffler, C., Ligtenberg, A., & Moschytz, G. (1989). Practical Fast 1-D DCT Algorithms with 11 Multiplications. In IEEE International Conference on Acoustics, Speech, and Signal Processing, (2), 988–991. IEEE. DOI: 10.1109/icassp.1989.266596.
Lowe, G. D. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, (60), 91–110. DOI: 10.1023/B:VISI.0000029664.99615.94.
Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395. DOI: 10.1145/358669.358692.