WEIGHTED SUMMATION OF AFM IMAGES USING LOCAL CORRELATION METRIC
Article Sidebar
Main Article Content
Abstract
The problem of weighted summation of component images of the surface of a material formed in two synchronous channels of an atomic force microscope (AFM) is considered. A computationally simple quality metric for combining component AFM images based on local correlation coefficients is proposed, which takes into account the contribution of each of the component AFM images to the resulting combined AFM image and the correlation between component AFM images. It is shown that local correlation provides a higher accuracy of AFM images combination quality estimation in comparison with global correlation. The dependences of the local correlation metric on the size of the correlation analysis window and the contribution of component AFM images to the resulting combined AFM images are obtained. A scheme for adaptive weighted summation of component AFM images is proposed.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
V. TSVIATKOU, Belarusian State University of Informatics and Radioelectronics, Minsk
д-р техн. наук, проф.
A. BORISKEVICH, Belarusian State University of Informatics and Radioelectronics, Minsk
д-р техн. наук, проф.
V. LAPITSKAYA, A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, Minsk
канд. техн. наук
S. CHIZHIK, A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, Minsk
акад. НАН Беларуси, д-р техн. наук, проф.
References
Jasiunas, M. D., Kearney, D. A., Hopf, J., & Wigley, G. B. (2002). Image fusion for uninhabited airborne vehicles. Proceedings IEEE International conference on field-programmable technology (348–351). IEEE. DOI: 10.1109/FPT.2002.1188708.
Morris, C., & Rajesh, R. S. (2014). Survey of spatial domain image fusion techniques. International Journal of Advanced Research in Computer Science, 2(3), 249–254.
Song, L., Lin, Y., Feng, W., & Zhao, M. (2009). A Novel Automatic Weighted Image Fusion Algorithm. International Workshop on Intelligent Systems and Applications (1–4). IEEE. DOI: 10.1109/IWISA.2009.5072656.
Mishra, D., & Palkar, B. (2015) Image fusion techniques: a review. International Journal of Computer Applications, 130(9), 7–13. DOI: 10.5120/ijca2015907084.
Bai, L., Xu, C., & Wang, C. (2015). A review of fusion methods of multi-spectral image. Optik: International Journal for Light and Electron Optics, 126(24), 4804–4807. DOI: 10.1016j.ijleo.2015.09.201.
He, K., Sun, J., & Tang, X. (2013). Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6), 1–14. DOI: 10.1109/TPAMI.2012.213.
Li, B., Xian, Y., Zhang, D., Su, J., Hu, X., & Guo, W. (2021). Multi-Sensor Image Fusion: A Survey of the State of the Art. Journal of Computer and Communications, 9(6), 73–108. DOI: 10.4236/jcc.2021.96005.
Kekre, H. B., Sarode, T., & Dhannawat, R. (2012). Kekre’s wavelet transform for image fusion and comparison with other pixel based image fusion techniques. International Journal of Computer Science and Information Security (IJCSIS), 10(3), 23–31.
Toet, A. (1989). Image fusion by a ratio of low-pass pyramid. Pattern Recognition Letters, 9(4), 245–253. DOI: 10.1016/0167-8655(89)90003-2.
Liu, Y., Chen, X., Wang, Z., Wang, Z. J., Ward, R. K., & Wang, X. (2018). Deep learning for pixel-level image fusion: recent advances and future prospects. Information Fusion, 1(42), 158–173. DOI: 10.1016/j.inffus.2017.10.007.
Liu, K., & Kang, G. (2017) Multiview convolutional neural networks for lung nodule classification. International Journal of Imaging Systems and Technology, 27(1), 12–22. DOI: 10.1002/ima.22206.
Petrovic, V., & Xydeas, C. (2005) Objective image fusion performance characterisation. Tenth IEEE International Conference on Computer Vision (ICCV'05): Vol. 1 (1866–1871). IEEE. DOI: 10.1109/ICCV.2005.175.
Piella, G., & Heijmans, H. (2003). A new quality metric for image fusion. International Conference on Image Processing 111–173. IEEE. DOI: 10.1109/ICIP.2003.1247209.
Qu, G., Zhang, D., & Yan, P. (2001). Medical image fusion by wavelet transform modulus maxima. Opt. Express, (9), 184–190.
Aslantas, V., & Bendes, E. (2015). A new image quality metric for image fusion: The sum of the correlations of differences. AEU – International Journal of Electronics and Communications, 69(12), 1890–1896. DOI: 10.1016/j.aeue.2015.09.004.
Han, Y., Cai, Y., Cao, Y., & Xu, X. (2013). A new image fusion performance metric based on visual information fidelity. Inf. Fusion, 14(2), 127–135. DOI: 10.1016/j.inffus.2011.08.002.
Most read articles by the same author(s)
- S. RUDIKOV, V. TSVIATKOU, A. SHKADAREVICH, INTERVAL QUALITY INDICATORS OF THE DYNAMIC RANGE COMPRESSION OF INFRARED IMAGES ON THE BASIS OF A TONE MAPPING MATRIX, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 11 (2022)