ELECTROPHYSICAL PARAMETERS INTERRELATION MODEL FOR CAD SYSTEMS
Article Sidebar
Main Article Content
Abstract
A model is presented and regularities are established for the relationship between the electrophysical parameters of a transistor structure and a two-dimensional channel, based on the self-consistency of the electrochemical potential and the concentration of charge carriers of a two-dimensional channel in a field-effect transistor structure. Such self-consistency is ensured by combining the Fermi – Dirac statistics with the condition of electrical neutrality of the transistor structure. The effect on the electrophysical parameters of a transistor structure with a two-dimensional semiconductor channel is considered for the band gap of the channel material, the capacitance of the gate dielectric, and the capacitance of interface states. The developed model of the relationship between the electrophysical parameters of a transistor structure with a two-dimensional channel can be used in computeraided design systems for the element base of micro- and nanoelectronics.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
D. PODRYABINKIN, Belarusian State University of Informatics and Radioelectronics, Minsk
канд. физ.-мат. наук
A. DANILYUK, Belarusian State University of Informatics and Radioelectronics, Minsk
канд. физ.-мат. наук, доц.
References
Yoon, Y., Ganapathi, K., & Salahuddin, S. (2011). How good can monolayer MoS2 transistors be? Nano Letters, 11(9), 3768–3773. DOI: 10.1021/nl2018178.
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012). Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nature Nanotechnology, 7(11), 699–712. DOI: 10.1038/nnano.2012.193.
Mingsheng, X. Tao, L., Minmin, S., & Hongzheng, C. (2013). Graphene-Like Two-Dimensional Materials. Chemical Reviews, 113(5), 3766–3798. DOI: 10.1021/cr300263a.
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., & Kis, A. (2011). Single-layer MoS2 transistors. Nature Nanotechnology, 6(3), 147–150. DOI: 10.1038/nnano.2010.279.
Cao, W., Kang, J., Liu, W., & Banerjee, K. (2014). A Compact Current–Voltage Model for 2D Semiconductor Based Field-Effect Transistors Considering Interface Traps, Mobility Degradation, and Inefficient Doping Effect. IEEE Transactions on Electron Devices, 61(12), 4282–4290. DOI: 10.1109/TED.2014.2365028.
Jiménez, D. (2012). Drift-diffusion model for single layer transition metal dichalcogenide field-effect transistors. Applied Physics Letters, 101(24), 243501. DOI: 10.1063/1.4770313.
Makovskaya, T., Danilyuk, A., Krivosheeva, A., Shaposhnikov, V., & Borisenko, V. (2020). Charge Properties of the MOS Transistor Structure with the Channel Made from a Two-Dimensional Crystal. Russian Microelectronics, 49(7). 507–515. DOI: 10.1134/S1063739720070069.
Chernozatonskii, L., & Artyukh, A. (2017). Quasi- two-dimensional transition metal dichalcogenides: structure, synthesis, properties and applications. Uspekhi Fizicheskih Nauk, 61(1), 2–28. DOI: 10.3367/ufne.2017.02.038065.
Wang, G., Chernikov, A., Glazov, M. M., Heinz, T. F., Marie, X., Amand, T., & Urbaszek, B. (2018). Excitons in atomically thin transition metal dichalcogenides. Review of Modern Physics, 90(2), 021001. DOI: 10.3367/UFNr.2017.02.038065.
Zebrev, G. I. (2011). Graphene Field Effect Transistors: Diffusion-Drift Theory. In S. Mikhailov (Eds.), Physics and Applications of Graphene-Theory (476–498). InTech. DOI: 10.5772/14211.