REGULARITIES OF CHANGE IN PROPERTIES OF THE ANISOTROPIC MEDIUM OVER HYDROCARBONS FROM SENSING MODES

Main Article Content

V. YANUSHKEVICH
S. KALINTSEV
K. SHPAK

Abstract

The article discusses the analysis of the patterns of changes in the properties of an anisotropic medium over hydrocarbons from sounding modes when using frequency modulation of signals and mixed amplitude-frequency modulation. The components of the surface impedance of the medium above hydrocarbons were modeled. A study was carried out of the characteristics of the environment above hydrocarbon accumulations for frequency-modulated signals from the modulation index, the frequency ratio coefficient and the conductivity of the dielectric filler of the host rocks. For amplitude-frequency modulated signals, the amplitude and phase characteristics of the combinational components of electromagnetic waves with two types of circular polarization are analyzed. Recommendations are given for the development of methods for searching for hydrocarbons based on frequency-modulated and amplitude-frequency-modulated signals. Methods for increasing the information content of electromagnetic methods of electrical prospecting are shown. The research results are relevant for geological exploration work.

Article Details

How to Cite
YANUSHKEVICH, V., KALINTSEV, S., & SHPAK, K. (2023). REGULARITIES OF CHANGE IN PROPERTIES OF THE ANISOTROPIC MEDIUM OVER HYDROCARBONS FROM SENSING MODES. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (2), 69-76. https://doi.org/10.52928/2070-1624-2023-41-2-69-76
Section
Электрофизика, электрофизические установки (технические науки)
Author Biography

V. YANUSHKEVICH, Euphrosyne Polotskaya State University of Polotsk

канд. техн. наук, доц.

References

Vladov, M. L., & Starovojtov, A. V. (2004). Vvedenie v georadiolokaciju [Introduction to GPR]. Moscow: Publ. MGU, (In Russ.).

Harris, P. E., Du, Z., MacGregor, L., Olsen, W., Shu, R., & Cooper, R. (2009). Joint interpretation of seismic and CSEM data using well log constraints: An example from Luva Field. First Break, 27(5), 73–81. DOI: 10.3997/1365-2397.27.1299.28932.

Yu, L. et al. (2001). Enhanced evaluation of lowresistivity reservoirs using new multicomponent induction log data. Petrophysics, (42), 611–623.

Zhdanov, M. S. (2009). Geophysical electromagnetic theory and methods. Amsterdam – New York – Tokyo: Elsevier.

Moskvichew, V. N. (1991). Interraction of electromagnetic waves (EMW) with anisotropic inclusion in communication line, 9th Microw. Conf. NICON – 91: Vol. 1, (240–244). Rydzyna.

Gololobov, D. V. (2009). Vzaimodeistvie elektromagnitnykh voln i uglevodorodnykh zalezhei. Minsk: Bestprint. (In Russ.).

Yanushkevich, V. F. (2017). Elektromagnitnye metody poiska i identifikatsii uglevodorodnykh zalezhei [Electromagnetic methods for searching and identifying hydrocarbon deposits]. Novopolotsk: PGU. (In Russ.).

Geldmacher, I., & Strack, K. (2017). A Fit-for-purpose electromagnetic System for Reservoir Monitoring and Geothermal Exploration. GRC Transactions, (41), 1649–1658.

Stepulenok, S. V., & Yanushkevich, V. F. (2009). Vzaimodeistvie amplitudno-chastotno-modulirovannykh signalov so sredoi nad uglevodo-rodnymi zalezhami [Interaction of amplitude-frequency-modulated signals with the environment above hydrocarbon deposits]. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya C, Fundamental'nye nauki [Herald of Polotsk State University. Series С. Fundamental sciences], (9), 103–108. (In Russ., abstr. in Engl.).

Helwig, S. L., Wood, W., & Gloux B. (2019). Vertical–vertical controlled‐source electromagnetic instrumentation and acquisition. Geophysical Prospecting, 67(6), 1582–1594. DOI: 10.1111/1365-2478.12771.

Baba, K. (2005). Electrical structure in marine tectonic settings. Surveys in Geophysics, (26), 701–731.

Garina, S., Ivanov, S., Kudryavceva, E., Legeydo, P., Veeken, P., & Vladimirov, V. (2013). Simultaneous EM and IP inversion using relaxation time constraints. First Break, 31(4), 69–72. DOI: 10.3997/1365-2397.31.4.67467.

Karataev, G. I. (2008). Geofizicheskie metody issledovanij [Geophysical research methods]. Minsk: BGU. (In Russ.).

Colombo, D., & Mcneice, G. (2013). Quantifying surface-to-reservoir electromagnetics for waterflood monitoring in a Saudi Arabian carbonate reservoir. Geophysics, 78(6), E281–E297. DOI: 10.1190/geo2012-0206.1.

Konstebl, S. (2010). Desyat' let morskoi CSEM dlya razvedki uglevodorodov [Ten years of offshore CSEM for hydrocarbon exploration]. Geofizika, 75(5). (In Russ.).

Ellis, M., Ruiz, F., Nanduri, S., Keirstead, R., Azizov, I., Frenkel, M., & Macgregor, L. (2011). Importance of anisotropic rock physics modelling in integrated seismic and CSEM interpretation. First Break, 29(6), 87–95. DOI: 10.3997/1365-2397.29.6.51279.

Hesthammer, J., Stefatos, A., Boulaenko, M., Fanavoll, S., & Danielsen, J. (2010). CSEM performance in light of well results. The Leading Edge, 29(1), 34–41, DOI: 10.1190/1.3284051.

Wirianto, M., Mulder, W., & Slob, E. (2010). A feasibility study of land CSEM reservoir monitoring in a complex 3-D model. Geophys. J. Int., 181(2), 741–755. DOI: 10.1111/j.1365-246X.2010.04544.x.