SEMI-AUTOMATIC ALGORITHM FOR CONSTRUCTING THE CONTOUR OF AREA OBJECTS ON MULTISPECTRAL SATELLITE IMAGE

Main Article Content

A. NEDZVEDZ
Bu QING
A. BELOTSERKOVSKY

Abstract

This article formalizes the problem of semi-automatic construction of the contour of area objects from satellite multispectral images and presents a solution algorithm using PCA and Dijkstra's algorithm. The emphasis of the article is on optimizing PCA using annual matrices for images of the same class, as well as optimizing the Dijkstra algorithm using dynamic programming methods. The contour is considered as the boundary of an object, which can be used for its segmentation and classification. The semi-automatic contour accepts reference points specified by the operator. The formalization of the algorithm is completed.

Article Details

How to Cite
NEDZVEDZ, A., QING, B., & BELOTSERKOVSKY, A. (2024). SEMI-AUTOMATIC ALGORITHM FOR CONSTRUCTING THE CONTOUR OF AREA OBJECTS ON MULTISPECTRAL SATELLITE IMAGE. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (1), 8-17. https://doi.org/10.52928/2070-1624-2024-42-1-8-17
Author Biography

A. BELOTSERKOVSKY, United Institute of Informatics Problems of the National Academy of Sciences of Belarus, Minsk

канд. техн. наук

References

Sojfer, V. A. (2003). Metody komp'juternoj obrabotki izobrazhenij. Moscow: FIZMATLIT. (In Russ.).

Furman, Ja. A., Jur'ev, A. N., & Janshin, V. V. (1992). Cifrovye metody obrabotki i raspoznavanija binarnyh izobrazhenij. Krasnojarsk: Izd-vo Krasnojar. un-ta. (In Russ.).

Vershinina, V. V., Palamar', I. N. (2002). Organizacija bazy znanij semanticheskoj seti na osnove XML-formata. In IV VNTK «Informacionnye tehnologii v nauke, proektirovanii i proizvodstve» (23). N. Novgorod: MVVO ATN RF. (In Russ.).

Ognev, I. V., Sidorova, N. A. (2007). Obrabotka izobrazhenij metodami matematicheskoj morfologii v associativnoj oscilljatornoj srede. Tehnicheskie nauki. Informatika i vychislitel'naja tehnika, (4), 87–98. (In Russ.).

Fisenko, V. T., Fisenko, T. Ju. (2008). Komp'juternaja obrabotka i raspoznavanie izobrazhenij. St. Petersburg: SPbGU ITMO. (In Russ.).

Papari, G., & Petkov, N. (2011). Edge and line oriented contour detection: State of the art. Image Vis. Comput., 29, 79–103.

Gong Xin-Yi, Su Hu, Xu De, Zhang Zheng-Tao, Shen Fei, & Yang Hua-Bin. (2018). An Overview of Contour Detection Approaches. Intern. J. of Automation and Computing, 15(6), 656–672. DOI: 10.1007/s11633-018-1117-z.

Senthilkumaran, N., & Rajesh R. (2009). A Study on Edge Detection Methods for Image Segmentation. Proc. of the Intern. Conf. on Mathematics and Computer Science, (I), 255–259.

Helber, P., Bischke, B., Dengel, A., & Borth D. (2019). EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification. IEEE J. of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7), 2217–2226. DOI: 10.1109/JSTARS.2019.2918242.

Helber, P., Bischke, B., Dengel, A., & Borth D. (2018). Introducing Eurosat: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification. In 2018 IEEE Intern. Geoscience and Remote Sensing Symposium (204–207). IEEE. DOI: 10.1109/IGARSS.2018.8519248.

Cheng, H. D., Jiang, X. H., Sun, Y., & Wang, J. (2001). Color image segmentation: advances and prospects. Pattern Recognition, 34(12), 2259–2281. DOI: 10.1016/S0031-3203(00)00149-7.

Mortensen, E. N., & Barrett, W. A. (1998). Interactive segmentation with intelligent scissors. Graphical Models and Image Processing, (60), 349–384. DOI: 10.1006/gmip.1998.0480.

Kang, H. W., & Sung, Y. S. (2002). Enhanced lane: interactive image segmentation by incremental path map construction. Graphical Models, 64(5), 282–303. DOI: 10.1016/S1077-3169(02)00007-2.

Knuth, D. E. (2000). Iskusstvo programmirovanija: v 4 t. Т. 3: Sortirovka i poisk. [The Art of Computer Programming (in 4 vol., Vol. 3: Sorting and Searching)]. St. Petersburg: Vil'jams. (In Russ.).

Falcao, A. X., Udupa, J. K., & Miyazawa, F. K. (2000). An ultra fast user-steered linage segmentation paradigm: live wire on the fly. IEEE Trans. Med. Imaging, 19(1), 55–62. DOI: 10.1109/42.832960.