REAL-TIME MANAGEMENT OF CRITICAL IT-SYSTEMS BASED ON NEURAL NETWORK TECHNOLOGIES

Main Article Content

A. STAROVOYTOV
V. KRASNOPROSHIN

Abstract

The paper investigates a relevant applied problem associated with building decision support systems for critical information services. An original approach is proposed, based on neural network forecasting, within which a method of dynamic local approximation using neural network models has been developed. The principles of constructing and implementing the operational algorithm (under conditions of uncertainty of the external load profile) of a combined proactive system for managing computational resources are outlined. Experiments have been conducted that confirm the effectiveness of the method and the approach as a whole.

Article Details

How to Cite
STAROVOYTOV, A., & KRASNOPROSHIN, V. (2024). REAL-TIME MANAGEMENT OF CRITICAL IT-SYSTEMS BASED ON NEURAL NETWORK TECHNOLOGIES. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (1), 18-25. https://doi.org/10.52928/2070-1624-2024-42-1-18-25
Author Biography

V. KRASNOPROSHIN, Belarusian State University, Minsk

д-р техн. наук, проф.

References

Straesser, M., Grohmann, J., von Kistowski, J., Eismann, S., Bauer, A., & Kounev, S. (2022). Why Is It Not Solved Yet? Challenges for Production-Ready Autoscaling. In ICPE '22: 13th ACM/SPEC International Conference on Performance Engineering (105–115). ACM. DOI: 10.1145/3489525.3511680.

Khan, N., Elizondo, D. A., Deka, L., & Molina-Cabello, M. A. (2021). Fuzzy Logic Applied to System Monitors. In IEEE Access: Vol. 9 (56523–56538). IEEE. DOI: 10.1109/ACCESS.2021.3072239.

Tran, D., Tran, Nh., Nguyen, B. M., & Nguyen, G. (2017). A Proactive Cloud Scaling Model Based on Fuzzy Time Series and SLA Awareness. In Procedia Computer Science (Intern. Conf. on Computational Science ICCS 2017): Vol. 108 (365–374). Elsevier. DOI: 10.1016/j.procs.2017.05.121.

Persico, V., Grimaldi, D., Pescapè, A., Salvi, A., & Santini, S. (2017). A Fuzzy Approach Based on Heterogeneous Metrics for Scaling Out Public Clouds. In IEEE Transactions on Parallel and Distributed Systems: Vol. 28, iss. 8 (2117–2130). IEEE. DOI: 10.1109/TPDS.2017.2651810.

Starovojtov, A. A. (2023). Modelirovanie sistem dlja proaktivnogo upravlenija vychislitel'nymi kompleksami. In D. A. Pogonyshev (Ed.), XXV Vserossijskaja studencheskaja nauchno-prakticheskaja konferencija Nizhnevartovskogo gosudarstvennogo universiteta: Ch. 3. Informatsionnye tekhnologii (148–155). Nizhnevartovsk: Publ. NVGU. http://konference.nvsu.ru/konffiles/383/Stud_konf_CH3_Informacionnye_tehnologii.pdf. (In Russ.).

Starovojtov, A. A. (2023). Algoritm proaktivnogo upravlenija vychislitel'nymi resursami. In A. V. Blohin (Ed.) et al. 80-ja nauchnaja konferencija studentov i aspirantov Belorusskogo gosudarstvennogo universiteta: Ch. 1 (398–401). Minsk: Publ. BGU. http://konference.nvsu.ru/konffiles/383/Stud_konf_CH3_Informacionnye_tehnologii.pdf. (In Russ.).

Starovoytov, A. A., & Krasnoproshin, V. V. (2023). Technology for making real-time decisions based on neural network forecasting. In A. Nedzved, & A. Belotserkovsky (Eds.), Pattern Recognition and Information Processing (PRIP'2023). Artificial Intelliverse: Expanding Horizons: Proceedings of the 16th International Conference (58–63). Minsk: Publ. BSU. https://prip.by/2023/assets/files/PRIP2023_proceedings.pdf.