АНТИМИКРОБНЫЕ СВОЙСТВА КАТИОННЫХ ПОЛИЭЛЕКТРОЛИТОВ

##plugins.themes.bootstrap3.article.main##

М. А. ЗИЛЬБЕРГЛЕЙТ
М. О. ШЕВЧУК
С. В. НЕСТЕРОВА
С. Ф. ЯКУБОВСКИЙ

Аннотация

Представлены обобщенные результаты анализа литературных данных по исследованиям полимерных материалов, обладающих антимикробными свойствами. Рассмотрены четыре группы полимерных антимикробных материалов, а также их наиболее значимые представители: полимерные материалы с четвертичным атомом азота, полимеры пиридинового типа, производные имидазола, хитозан, полипептидные антибиотики.

##plugins.themes.bootstrap3.article.details##

Как цитировать
ЗИЛЬБЕРГЛЕЙТ, М. А., ШЕВЧУК, М. О., НЕСТЕРОВА, С. В., & ЯКУБОВСКИЙ, С. Ф. (2019). АНТИМИКРОБНЫЕ СВОЙСТВА КАТИОННЫХ ПОЛИЭЛЕКТРОЛИТОВ. Вестник Полоцкого государственного университета. Серия B. Промышленность. Прикладные науки, (3), 118-124. извлечено от https://journals.psu.by/industry/article/view/528
Выпуск
Раздел
Химическая технология
Биографии авторов

М. А. ЗИЛЬБЕРГЛЕЙТ, Институт общей и неорганической химии НАН Беларуси, Минск

д-р хим. наук

М. О. ШЕВЧУК, Белорусский государственный технологический университет, Минск

канд. техн. наук, доц.

С. В. НЕСТЕРОВА, Белорусский государственный технологический университет, Минск

канд. хим. наук

С. Ф. ЯКУБОВСКИЙ, Полоцкий государственный университет

канд. хим. наук, доц.

Библиографические ссылки

Kenaway, El-Refaie. The Chemistry and Applications of Antimicrobial Polymers: A State of the Art Review / Kenaway, El-Refaie, S.D. Worley, Roy Broughton // Bio Macromolecules. – 2007. – V. 8, № 5. – P. 1359–1384.

Polymer surfaces derivatized with poly(vinyl-Nhexylpyridinium) kill airborne and waterborne bacteria / J.C. Tiller [et al.] // Biotechnol Bioeng. – 2002. – V. 79. – P. 465–471.

Designing surfaces that kill bacteria on contact / J.C. Tiller [et al.] // Proc Natl Acad Sci USA. – 2001. – V. 98. – P. 5981–5985.

Antibacterial activities of polystyrene-block-poly(4-vinyl pyridine) and poly(styrenerandom-4-vinyl pyridine) / E.S. Park [et al.] // Eur. Polym. J. – 2004. – V. 40. – P. 2819–2822.

Li, G. A study of pyridinium-type functional polymers. Behavioral features of the antibacterial activity of insoluble pyridinium-type polymers / G. Li, J. Shen // J. Appl. Polym. Sci. – 2000. – V. 78. – P. 676–684.

Synergistic activity of hydrophilic modification in antibiotic polymers / P.H. Sellenet [et al.] // Biomacromolecules. – 2007. – V. 8. – P. 19–23.

Synergistic activity of hydrophilic modification in antibiotic polymers / P.H. Sellenet [et al.] // Biomacromolecules. – 2007. – V. 8. – P. 19–23.

Sambhy, V. Antibacterial and hemolytic activities of pyridinium polymers as a function of the spatial relationship between the positive charge and the pendant alkyl tail / V. Sambhy, B.R. Peterson, A. Sen // Angew. Chem. Int. Ed. – 2008. – V. 47. – P. 1250–1254.

Tuning anti-microbial activity of poly (4-vinyl 2-hydroxyethyl pyridinium) chloride by anion exchange reactions / S. Sharma [et al.] // J. Mater. Sci Mater. Med. – 2010. – V. 21. – P. 717–724.

Anderson, E.B. Imidazole- and imidazolium-containing polymers for biology and material science applications / E.B. Anderson, T.E. Long // Polymer. – 2010. – V. 51. – P. 2447–2454.

Soykan, C. Microbial screening of copolymers of N-vinylimidazole with phenacyl methacrylate: synthesis and monomer reactivity ratios / C. Soykan, R. Coskun, A. Delibas // J. Macromol. Sci. Pure Appl. Chem. – 2005. – V. 42. – P. 1603–1619.

Secondary and tertiary polydiallylammonium salts: novel polymers with high antimicrobial activity / L.M. Timofeeva [et al.] // Biomacromolecules. – 2009. – V. 10. – P. 2976–2986.

Walczak, M. The effect of polyhexamethylene guanidine hydrochloride (PHMG) derivatives introduced into polylactide (PLA) on the activity of bacterial enzymes / Walczak M., Richert A. & A. Burkowska-But // J. Ind. Microbiol. Biotechnol. – 2014. – V. 41. – P. 1719–1724.

Structural characterization and antibacterial activity of oligoguanidine (polyhexamethylene guanidine hydrochloride) / D. Wei [et al.] // Materials Science and Engineering. – 2009. – V. 9. – P. 1776–1780.

Roth, B. Polihexanide for wound treatment – how it began / B. Roth, F.H.H. Brill // Skin Pharmacol. Physiol. – 2010. – V. 23 (1). – P. 4–6.

Polyhexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant staphylococcus aureus and nosocomial infections / M.K. Oulé [et al.] // J. Med. Microbiol. – 2008. – V. 57. – P. 1523–1528.

Polybiguanides, particularly amethylene biguanide, have activity against human immunodeficiency virus type 1 / F.C. Krebs [et al.] // Biomed. Pharmacol. – 2005. – V. 59. – P. 438–445.

O’Malley, L.P. Microbial degradation of the biocide polyhexamethylene biguanide: isolation and characterization of enrichment consortia and determination of degradation by measurement of stable isotope incorporation into DNA / L.P. O’Malley, C.H. Shaw, A.N. Collins // Journal of Applied Microbiology. – 2007. – V. 103. – P. 1158–1169.

Butcher, M. PHMB: an effective antimicrobial in wound bioburden management / M. Butcher // British Journal of Nursing. – 2012. – V. 21 (12). – P. 16–21.

De Paula, G.F. Physical and Chemical Characterization of Poly(hexamethylene biguanide) Hydrochloride / G.F. de Paula, G.I. Netto, L.H.C. Mattoso // Polymers. – 2011. – V. 3. – P. 928–941.

Study of Epigenetic Properties of Poly (HexaMethylene Biguanide) Hydrochloride (PHMB) / E.E. Creppy [et al.] // Int. J. Environ. Res. Public Health. – 2014. – V. 11. – P. 8069–8092.

Atomis force microscopy of gastrin mucin and chtosan mucoadhesive systems / M.P. Deacon [et al.] // Biochem. J. – 2000. – V. 348. – P. 557–563.

Quality assurance in pathology for rodent carcinogenicity studies / G.A. Boorman [et al.]. In Handbook of Carcinogen Testing (H.A. Milman and E.K. Weisburger, Eds.) // Noyes Publications, Park Ridge, NJ. – 1985. – P. 345–357.

Carvalho, T.S. Combined effect of a fluoride-, stannous- and chitosan-containing toothpaste and stannouscontaining rinse on the prevention of initial enamel erosion-abrasion / Carvalho T.S., Lussi A. // J. Dent. – 2014. – V. 42. – P. 450–459.

Chae, S.Y. Influence of molecular weight on oral absorption of water soluble chitosans / S.Y. Chae, Jang M.-K., J.-W. Nah // J. Control. Release. – 2005. – V. 102. – P. 383–394.

Cheng, Q. Prenatal and developmental effect of high molecular weight chitosan (HMWCS) to mice / Q. Cheng, J. Zhang, W. Xia // Regul. Toxicol. Pharmacol. – 2013. – V. 65. – P. 294–303.

Chiang, M.-T. Effect of dietary chitosans with different viscosity on plasma lipids and lipid peroxidation in rats fed on a diet enriched with cholesterol / M.-T. Chiang, H.-T. Yao, H.-C. Chen // Biosci. Biotechnol. Biochem. – 2000. – V. 64. – P. 965–971.

Continuous and massive intake of chitosan affects mineral and fat-soluble vitamin status in rats fed on a high-fat diet / K. Deuchi [et al.] // Biosci. Biotechnol. Biochem. – 1995. – V. 59. – P. 1211–1216.

Deuchi, K. Effect of the viscosity or deacetylation degree of chitosan on fecal fat excreted from rats fed on a high-fat diet / K. Deuchi [et al.] // Biosci. Biotechnol. Biochem. – 1995. V. 59. – P. 781–785.

Dixon, W.J. Jr. Introduction to Statistical Analysis, 2nd ed., McGraw-Hill Book Company, Inc. / W.J. Dixon, and F.J. Massey. – New York. – P. 276–278, 412.

Domard, A. Preparation and characterization of fully deacetylated chitosan / A. Domard, M. Rinaudo // Int. J. Biol. Macromol. – 1983. – V. 5. – P. 49–52.

Effects of habitual chitosan intake on bone mass, bone-related metabolic markers and duodenum CaBP D9K mRNA in ovariectomized SHRSP rats / C.-Y. Yang [et al.] // J. Nutr. Sci. Vitaminol (Tokyo), 2002. – V. 48. – P. 371–378.

The controlling biodegradation of chitosan fibers by N-acetylation in vitro and in vivo / Y.M. Yang [et al.] // J. Mater. Sci. Mater. Med. – 2007. – V. 18. – P. 2117–2121.

Monarul, M.D. In vitro antibacterial activity of shrimp chitosan against salmonella paratyphi and staphylococcus aureus / M.D. Monarul, Dhan M.D., K.R.M. Masum // Journal of Bangladesh Chemical Society, 2011. – V. 24 (2). – P. 185–190.

Annaian, S. Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis / S. Annaian, K. Kandasamy, N. Lakshman // Biotechnology Reports. – 2016. – V. 9. – P. 25–30.

Антибактериальные и антитоксические свойства хитозана и его производных / Л.А. Иванушко [и др.] // Тихоокеанский медицинский журнал. – 2009. – № 3. – С. 82–85.

Взаимодействие бактериальных эндотоксинов с хитозаном. Влияние структуры эндотоксина, молекулярной массы хитозана и ионной силы раствора на процессы комплексообразования / В.Н. Давыдова [и др.] // Биохимия. – 2000. – Т. 65, № 9. – С. 1278–1287.

Афиногенов, Г.Е. Антимикробные полимеры / Г.Е. Афиногенов, Е.Ф. Панарин. – СПб. : Гиппократ, 1993. – 264 с.

Новые депсипептиды и способы их получения : пат. RU № 2348647 / Дж. Финн, М. Моритко, Ян Б. Парр, М. Джанглвл. – Опубл. 10.03.2009.