STUDY OF WETTING OF THE SURFACE OF A REGULAR STRUCTURED PACKING ELEMENT
Article Sidebar
Main Article Content
Abstract
This work presents a study of the wetting of the surface of elements of regular structured packing used in phase separation processes in the chemical industry. Regular structured packings are known for their high throughput and mass transfer efficiency, making them important for optimizing processes. The experiments assessed the influence of geometric characteristics of corrugated sheets, such as the length of the generating line and the presence of perforation, on the efficiency of wetting and hydrodynamic parameters. The results showed that perforation of the corrugated elements significantly improves wetting, promoting uniform distribution of the liquid over the surface and increasing the intensity of phase interactions.
Based on the obtained data, the optimal size of the generating corrugation was determined. In particular, a generating size of 8 mm was recognized as the most effective and was used for designing two types of packings with specific surfaces of 250 m²/m³ and 400 m²/m³. The results are of significant practical importance and can be used for the development of more efficient equipment in the chemical industry, which in turn contributes to improved performance and reduced costs.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
D. MYTSKO, Belarusian State Technological University, Minsk
канд. техн. наук
References
Croce, G. & Suzzi, N. (2025). Instability of a Film Falling Down a Bounded Plate and Its Application to Structured Packing. Fluids, 10(2), 30. DOI: 10.3390/fluids10020030
Suzzi, N. & Croce, G. (2017). Numerical Simulation of Rivulet Build Up via Lubrication Equations. J. Phys.: Conf. Ser., 923(1), 012020. DOI: 10.1088/1742-6596/923/1/012020
Pavlenko, A., Zhukov, V., Pecherkin, N., Slesareva, E., Boyadjiev, C. & Dzhonova-Atanasova, D. (2021). Studying the process of freons mixture separation on a structured packing Sultzer 500X. E3S Web of Conferences, (258), 11008. DOI: 10.1051/e3sconf/202125811008
Mazarei Sotoodeh, M., Zivdar, M. & Rahimi, R. (2017). CFD Simulation of Dry and Wet Pressure Drops and Flow Pattern in Catalytic Structured Packings. Journal of Chemical and Petroleum Engineering, 51(1), 27–37. DOI: 10.22059/jchpe.2017.62163
Amini, Y., Karimi-Sabet, J., Nasr Esfahany, M., Haghshenasfard, M. & Dastbaz, A. (2018). Experimental and numerical study of mass transfer efficiency in new wire gauze with high capacity structured packing. Separation Science and Technology, 54(4), 614–623. DOI: 10.1080/01496395.2018.1549076
Zakeri, A., Einbu, A., Wiig, P.O., Øi, L. E. & Svendsen, H.F. (2011). Experimental Investigation of Pressure Drop, Liquid Hold-Up and Mass Transfer Parameters in a 0.5 m Diameter Absorber Column. Energy Procedia, (4), 606–613. DOI: 10.1016/j.egypro.2011.01.095
Haroun, Y. & Raynal, L. (2015). Use of Computational Fluid Dynamics for Absorption Packed Column Design. Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, 70(4), 667–678. DOI: 10.2516/ogst/2015027
Marcelo, H.B. (1992). Gas absorption experiments in a pilot plant column with the Sulzer structured packing Mellapack. Lausanne: EPFL. DOI: 10.5075/epfl-thesis-984
Smutek, J. & Isoz, M. (2018). Numerical Simulation of Flow in Superpak Family Packings. Proceedings of the TPFM Conference, (257–264). DOI: 10.14311/TPFM.2018.035
Isoz, M. (2017). CFD Study of Gas Flow Through Structured Separation Columns Packings Mellapak 250.X and Mellapak 250.Y. Proceedings of the TPFM Conference, (171–184). DOI: 10.14311/TPFM.2017.023
Novikova, I. & Pushnov, A. (2016). New Structured Packing CUB for Purification of Exhaust Gases. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 8(4), 438–442. DOI: 10.3846/mla.2016.954
Arkharov, I.A., Arkharov, A.M., Navasardyan, E.S. & Dontzov, A.V. (2018). Minimal Surfaces as Constant-Energy Surfaces for Maximum Heat and Mass Transfer Efficiency in Structured Packing of the Distillation Column. Journal of Enhanced Heat Transfer, 25(2), 143–159. DOI: 10.1615/JEnhHeatTransf.2018026639
Myt'ko, D.Yu. & Vaitekhovich, P.E. (2020). Gidravlicheskoe soprotivlenie regulyarnykh nasadok massobmennykh apparatov [Hydraulic Resistance of Regular Attachments of Mass Exchange Devices]. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya F, Stroitel'stvo. Prikladnye nauki [Herald of Polotsk State University. Series F, Civil engineering. Applied sciences], (8), 33–38. (In Russ., abstr. in Engl.).
Vaitekhovich, P.E. & Myt'ko, D.Yu. (2021). Sravnitel'nyi analiz effektivnosti regulyarnykh nasadok dlya massoobmennykh apparatov [Comparative Analysis of the Effectiveness of Regular Attachments for Mass Transfer Devices]. Trudy BGTU. Seriya 2, Khimicheskie tekhnologii, biotekhnologii, geoekologiya [Proceedings of BSTU. Chemical Engineering, Biotechnologies, Geoecology], 2(235), 44–49. (In Russ., abstr. in Engl.).
Vaitekhovich, P.E. & Myt'ko, D.Yu. (2021). Tekhniko-ekonomicheskoe obosnovanie i vybor optimal'noi nasadki [Technical and economic comparison and selection of the optimal nozzle]. Trudy BGTU. Seriya 2, Khimicheskie tekhnologii, biotekhnologii, geoekologiya [Proceedings of BSTU. Chemical Engineering, Biotechnologies, Geoecology], 1(241), 69–73. (In Russ., abstr. in Engl.).
Vaitekhovich, P.E., Myt'ko, D.Yu. & Volk, A.M. (2021). Vliyanie geometricheskikh parametrov regulyarnoi strukturirovannoi nasadki na gidrodinamiku i massoobmen [Influence of Geometric Parameters of Regular Structured Packing on Hydrodynamics and Mass Transfer]. Trudy BGTU. Seriya 2, Khimicheskie tekhnologii, biotekhnologii, geoekologiya [Proceedings of BSTU. Chemical Engineering, Biotechnologies, Geoecology], 2(247), 67–731 (In Russ., abstr. in Engl.).
Ramm, V.M. (1976) Absorbtsiya gazov [Absorption of Gases]. Moscow: Khimiya. (In Russ.)
Most read articles by the same author(s)
- Р. VAYTEKHOVICH, D. MYTSKO, SIMILARITY OF PROCESSES OF HYDRODYNAMICS AND MASS TRANSFER IN A REGULAR STRUCTURED NOZZLE, Vestnik of Polotsk State University. Part B. Industry. Applied Sciences: No. 3 (2022)