COMPUTATIONAL MODEL OF THE STRESS-STRAIN STATE OF STATICALLY INDETERMINATE REINFORCED CONCRETE STRUCTURES
Article Sidebar
Main Article Content
Abstract
The article combines methods for calculating the main resistance parameters of reinforced concrete structures: a deformation calculation model of the cross section based on diagrams of concrete and reinforcement deformation, a block model based on the law of reinforcement adhesion with concrete and a finite element method for calculating internal forces. Using the example of a continuous beam, the possibility of calculating the parameters of the stress-strain state in any cross-section, at any stage of the construction, avoiding the use of empirical dependencies, is shown.
A simulation of the work of reinforced concrete with cracks during bending is performed. An algorithm is presented for calculating the parameters of the stress-strain state of an uncut bent structure under the action of a load with modeling of the equivalent equilibrium state of the cross section during crack formation. Comparison of experimental and calculated parameters of a statically indeterminate reinforced concrete beam is performed. The directions of further research are determined.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
D. LAZOUSKI, Euphrosyne Polotskaya State University of Polotsk
д-р техн. наук, проф.
D. GLUHAU, Euphrosyne Polotskaya State University of Polotsk
канд. техн. наук, доц.
Y. LAZOUSKI, Euphrosyne Polotskaya State University of Polotsk
канд. техн. наук, доц.
References
Gvozdev, A.A. (1934). O peresmotre sposobov rascheta zhelezobetonnykh konstruktsii i o pervykh ego rezul'tatakh. Moscow; Leningrad: Gosstroiizdat. (In Russ.).
Murashev, V.I. (1950). Treshchinoustoichivost', zhestkost' i prochnost' zhelezobetona. Moscow: Mashstrojizdat. (In Russ.).
Bortolotti, L. (1991). First Cracking Load of Concrete Subjected to Direct Tension. ACI Materials Journal, 88 (1), 70–73.
Tur, V.V. & Rak, N.A. (2003). Prochnost' i deformatsii betona v raschetakh konstruktsii. Brest: BGTU. (In Russ.).
Nemirovskii, A.M. (1968). Issledovanie napryazhenno-deformirovannogo sostoyaniya zhelezobetonnykh elementov s uchetom raboty rastyanutogo betona nad treshchinami i peresmotr na etoi osnove teorii rascheta deformatsii i raskrytiya treshchin. In A.A. Grozdeva (Eds.) Prochnost' i zhestkost' zhelezobetonnykh konstruktsii: sb. tr. (152–173). Moscow: Stroiizdat. (In Russ.).
Lazovskii, D.N. (1998). Usilenie zhelezobetonnykh konstruktsii ekspluatiruemykh stroitel'nykh sooruzhenii. Novopolotsk: Polots. gos. un-t. (In Russ.).
Westergaard, H.M. (1930). Computation of Stresses in Bridge Slabs Due to Whell Loads. Public Roads, 11 (1), 1–23.
Croce, P. & Formichi, P. (2014). Numerical Simulation of the Behavior of Cracked Reinforced Concrete Members. Materials Sciences and Applications, (5), 883–894.
Lowes, L.N., Moehle, J.P. & Govindjee, S. (2004). Concrete-Steel Bond Model for Use in Finite Element Modeling of Reinforced Concrete Structures. ACI Structural Journal, 101 (4), 501–511.
Kholmyanskii, M.M. (1997). Beton i zhelezobeton: Deformatsii i prochnost'. Moscow: Stroiizdat. (In Russ.).
Gil', A.I. (2021). Rezul'taty eksperimental'nykh issledovanii soprotivleniya izgibu staticheski neopredelimykh zhelezobetonnykh balok s kombinirovannym armirovaniem rastyanutoi zony opornogo secheniya [Results of experimental research of bending resistance of statically indeterminate reinforced concrete beams with combined reinforcement of the stretched zone of the support section]. Vestn. Polots. gos. un-ta. Ser. F, Str-vo. Prikladnye nauki [Vestnik of Polotsk State University. Part F, Constructions. Applied Sciences], (16), 58–64. (In Russ., abstr. in Engl.).