IDENTIFICATION OF TRANSFORMATION MODELS OF COORDINATE SYSTEMS ON THE PLANE

Main Article Content

A. IVASHNIOVA
K. MARKOVICH
P. PARADNIA

Abstract

To transform coordinate systems on a plane, depending on the composition of the transformation elements, orthogonal, similar and affine models are distinguished. The article analyzes existing approaches to identifying transformation models. An approach is proposed for identifying a model for transforming coordinate systems on a plane, based on geometric properties that do not change under a certain type of transformation. Based on the proposed approach, a procedure has been compiled in the software product Matlab, accelerating the process of calculating all the necessary relationships for analysis and subsequent determination of the type of model for transforming coordinate systems on a plane.

Article Details

How to Cite
IVASHNIOVA, A., MARKOVICH, K., & PARADNIA, P. (2023). IDENTIFICATION OF TRANSFORMATION MODELS OF COORDINATE SYSTEMS ON THE PLANE. Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences, (3), 75-80. https://doi.org/10.52928/2070-1683-2023-35-3-75-80
Author Biography

K. MARKOVICH, Euphrosyne Polotskaya State University of Polotsk

канд. техн. наук

References

Modenov, P.S. (1961). Geometricheskie preobrazovaniya. Moscow: Izdatel'stvo Moskovskogo universiteta. (In Russ.).

Ghilani, Ch.D. & Wolf, P.R. (2006). Adjustment computations: spatial data analysis, Fourth Edition. Hoboken: JOHN WILEY & SONS, INC.

Degtyarev, A.M. & Yaltykhov, V.V. (2013). Identifikatsiya modeli transformatsii v geodezii na osnove affinnogo preobrazovaniya [Identification of the transformation model in geodesy based on affine transformation]. Avtomatizirovannye tekhnologii izyskanii i proektirovaniya [Automated survey and design technologies], 2(49), 71–74. (In Russ., abstr. in Engl.).

Butkevich, A.V. (1978). Opredelenie vida lineinogo transformirovaniya prostranstvennykh pryamougol'nykh koordinat [Determining the type of linear transformation of spatial rectangular coordinates]. Geodeziya i kartografiya [Geodesy and cartography], (4), 35–37. (In Russ., abstr. in Engl.).

Gusak, A.A. (2007). Vysshaya matematika: v 2 t. T. 1. Minsk: TetraSistems. (In Russ.).

Most read articles by the same author(s)

1 2 > >>