VERIFICATION AND VALIDATION OF A COMPUTER COMPUTATIONAL MODEL FOR THE DESIGN OF BUILDING STRUCTURES

Main Article Content

V. NADOLSKI

Abstract

A review and analysis of the verification and validation procedures of computer computational models has been performed in order to provide a conceptual framework and guidance on their implementation in relation to the design of building structures. The description of verification procedures for computer software and computer computational models is presented. The main stages of validation are formulated. The purpose of validation is to confirm the applicability, predictive ability and determination of the characteristics of the accuracy of computer models. Based on the analysis of the design value of the load-bearing capacity, a conclusion is made about the number of experiments required for validation for computer models. The study focuses on the description of verification and validation procedures for computer models of new design solutions and non-standardized model parameters. However, the recommendations given here are also suitable for more studied design solutions, while the scale of verification and validation activities may be reduced.

Article Details

How to Cite
NADOLSKI, V. (2024). VERIFICATION AND VALIDATION OF A COMPUTER COMPUTATIONAL MODEL FOR THE DESIGN OF BUILDING STRUCTURES. Vestnik of Polotsk State University. Part F. Constructions. Applied Sciences, (2), 42-50. https://doi.org/10.52928/2070-1683-2024-37-2-42-50
Section
Construction
Author Biography

V. NADOLSKI, Brest State Technical University

канд. техн. наук, доц.

References

Graciano, C. & Ayestarán, A. (2013). Steel plate girder webs under combined patch loading, bending and shear. Journal of Con-structional Steel Research, (80), 202–212. DOI: 10.1016/j.jcsr.2012.09.018.

Kövesdi, B., Alcaine, J., Dunai, L., Mirambell, Е., Braun, B. & Kuhlmann, U. (2014). Interaction behaviour of steel I-girders Part I: Longitudinally unstiffened girders. Journal of Constructional Steel Research, (103), 327–343. DOI: 10.1016/j.jcsr.2014.06.018.

Nadolski, V., Marková, J., Podymako, V. & Sýkora, M. (2022). Pilot numerical analysis of resistance of steel beams under combined shear and patch loading. Proceedings of conference Modelling in Mechanics, 11–21.

Nadolski, V., Marková, J., Podymako, V. & Sýkora, M. (2023). On Development of Numerical Resistance Models of Thin-Web Steel Girders. Transactions of the VSB – Technical University of Ostrava, Civil Engineering Series, 23(1), 12–19. DOI: 10.35181/tces-2023-0003.

Kovacevic, S., Markovic, N., Sumarac, D. & Salatic, R. (2019). Influence of patch load length on plate girders. Part II: Numerical research. Journal of Constructional Steel Research, (158), 213–229. DOI: 10.1016/j.jcsr.2019.03.025.

Sinur, F. & Beg, D. (2013). Moment-shear interaction of stiffened plate girders – Tests and numerical model verification. Journal of Constructional Steel Research, (85), 116–129. DOI: 10.1016/j.jcsr.2013.03.007.

Estrada, I., Real, E. & Mirambell, E. (2007). General behaviour and effect of rigid and non-rigid end post in stainless steel plate girders loaded in shear. Part II: Extended numerical study and design proposal. Journal of Constructional Steel Research, (63), 985–996. DOI: 10.1016/j.jcsr.2006.08.010.

Nadol'skii, V.V. (2018). Raschet i konstruirovanie flantsevogo soedineniya elementov pryamougol'nogo secheniya, podverzhennykh tsentral'nomu rastyazheniyu [Calculation and Construction of the Flange Connection of Rectangular Elements Subjected to the Axial Tension]. Vestn. Polots. gos. un-ta. Ser. F: Priklad. nauki. Str-tvo [Vestnik of Polotsk State University. Part F, Constructions. Applied sciences], (16), 121–130. (In Russ., abstr. in Engl.).

Tur, V.V. & Nadol'skii, V.V. (2022). Kontseptsiya proektirovaniya stroitel'nykh konstruktsii na osnove chislennykh modelei soprotivleniya [The Concept of Design of Building Structures Based on Numerical Resistance Models]. Str-vo i rekonstruktsiya [Building and Reconstruction], 6(104), 78–90. DOI: 10.33979/2073-7416-2022-104-6-78-90. (In Russ., abstr. in Engl.).

Perel'muter, A.V. & Tur, V.V. (2017). Gotovy li my pereiti k nelineinomu analizu pri proektirovanii [Whether we are ready to proceed to a nonlinear analysis at designing?]. International Journal for Computational Civil and Structural Engineering, 13(3), 86–102. DOI: 10.22337/1524-5845-2017-13-3-86-102. (In Russ., abstr. in Engl.).

Matveev, A.D. (2018). Metod mnogosetochnykh konechnykh elementov v raschetakh kompozitnykh balok slozhnoi formy [Mul-tigrid finite element method in the calculations of composite beams of irregular shape]. In Reshetnevskie chteniya: v 2 ch. Ch. 1. Krasnoyarsk: SibGU im. M.F. Reshetneva. (In Russ.).

Ustimenko, E.E. & Skachkov, S.V. (2019). Metod konechnykh elementov modeli tonkostennogo profilya s polkami ob"emnogo fasonnogo elementa. Inzhener. vestn. Dona, 4(55), 54–63. (In Russ.).

Nadol'skii, V.V. (2023). Parametry chislennykh modelei nesushchei sposobnosti dlya stal'nykh elementov [Parameters of Numerical Resistance Models for Steel Elements]. Str-vo i rekonstruktsiya [Building and Reconstruction], 1(1), 43–56. DOI: 10.33979/2073-7416-2023-105-1-43-56. (In Russ., abstr. in Engl.).

Martynenko, T.M., Pronkevich, S.A., Martynenko, I.M. & Maksimovich, V.A. (2022). Analiz prochnosti uzlovykh soedinenii pri razlichnykh ispolneniyakh konstruktsii na osnove modelirovaniya v srede ANSYS [Strength Analysis of Junction Joints for Dif-ferent Design Performances on the Basis of Simulation in the Ansys Software]. Mekhanika. Issledovaniya i innovatsii, (15), 147–151. (In Russ., abstr. in Engl.).

Frolov, A.V., Voronov, M.V., Medel'tsev, A.A., Sedova, K.A. & Shapovalov, P.A. (2022). Modelirovanie napryazhenno-deformirovannogo sostoyaniya svarnykh soedinenii v ANSYS Mechanical [Modeling the stress-strain state of welded joints in ANSYS Mechanical]. Izv. TulGU. Tekhn. nauki [Izvestiya TulGU. Technical science], (11), 61–76. DOI: 10.24412/2071-6168-2022-11-61-76. (In Russ., abstr. in Engl.).

Palaev, A.G., Nosov, V.V. & Krasnikov, A.A. (2022). Modelirovanie raspredeleniya temperaturnykh polei i napryazhenii v svarnom soedinenii s primeneniem ANSYS [Simulating Distribution of Temperature Fields and Stresses in Welded Joint Using ANSYS]. Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov [Science and technology of pipeline transport of oil and petroleum products], 12(5), 461–469. DOI: 10.28999/2541-9595-2022-12-5-461-469. (In Russ., abstr. in Engl.).

Nadol'skii, V.V. (2023). Statisticheskie kharakteristiki pogreshnosti chislennykh modelei nesushchei sposobnosti dlya stal'nykh elementov [Statistical Characteristics of the Numerical Model Uncertainties for Steel Elements]. Str-tvo i rekonstruktsiya [Building and Reconstruction], 3(107), 17–34. DOI: 10.33979/2073-7416-2023-107-3-17-34. (In Russ., abstr. in Engl.).

Nadol'skii, V.V. (2023). Koeffitsienty nadezhnosti dlya nelineinykh modelei nesushchei sposobnosti balok s gibkoi stenkoi Realiability coefficients for nonlineer models of load-bearing capacity of beams with flexible web]. Vestn. MGSU [Vestnik MGSU], 18(6), 852–863. DOI: 10.22227/1997-0935.2023.6.852-863. (In Russ., abstr. in Engl.).

Britov, G.S. (2013). Verifikatsiya, validatsiya i testirovanie komp'yuternykh modelei lineinykh dinamicheskikh sistem. Infor-matsionno-upravlyayushchie sistemy, 2(63), 75–82. (In Russ.).

Sal'nikov A.V., Frantsuzov, M.S., Vinogradov, K.A., Pyatunin, K.R. & Nikulin, A.S. (2022). Verifikatsiya i validatsiya komp'yuternykh modelei [Digital Simulation Verification and Validation]. Izv. vyssh. ucheb. zavedenii. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 9(750), 110–115. (In Russ., abstr. in Engl.).

Nadol'skii, V.V. (2023). Otsenka raschetnogo znacheniya nesushchei sposobnosti stal'nykh elementov, proektiruemykh na osnove chislennykh modelei [Evaluating the design value of the bearing capacity of steel elements designed using numerical models]. Vestn. MGSU [Vestnik MGSU], 18(3), 367–378. DOI: 10.22227/1997-0935.2023.3.367-378. (In Russ., abstr. in Engl.).

Charikova, I.N. (2017). Osobennosti matematicheskogo modelirovaniya balochnykh sistem v interaktivnoi obrazovatel'noi srede. Prom. i grazhdanskoe str-vo, (11), 112–116. (In Russ.).

Temis, Yu.M., Solov'eva, A.V., Zhurenkov, Yu.N., Startsev, A.N., Temis, M.Yu., Yakushev, D.A., … Drozhzhin, M.V. (2021). Tsifrovoi dvoinik ustanovki dlya ispytanii tsentrobezhnogo kompressora malorazmernogo GTD [Digital twin of rig for testing of centrifugal compressor for small-scale gas turbine engine]. Aviats. dvigateli [Aviation Engines], 1(10), 5–16. DOI: 10.54349/26586061_2021_1_5. (In Russ., abstr. in Engl.).

Sal'nikov, A.V., Gordin, M.V., Shmotin, Yu.N., Nikulin, A.S., Makarov, P.V. & Frantsuzov, M.S. (2022). Tsifrovye dvoiniki – platforma dlya upravleniya zhiznennym tsiklom aviatsionnykh dvigatelei [Digital Twins – a Platform for Aircraft Engine Lifecycle Management]. Izv. vyssh. ucheb. zavedenii. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 4(745), 60–72. DOI: 10.18698/0536-1044-2022-4-60-72.(In Russ., abstr. in Engl.).

Borisov, E.A. & Teplov, A.V. (2020). Osobennosti proverki kachestva programmnogo obespecheniya. Nauka cherez prizmu vremeni, 1(34), 27–29. (In Russ.).

Karakhanova, A.A. & Malikova, A.S. (2019). Rassmotrenie printsipov provedeniya testirovaniya programmnogo obespecheniya [Consideration of Principles of Testing the Software]. Sinergiya Nauk, (41), 264–270. (In Russ., abstr. in Engl.).

Alekseev, A.K. & Bondarev, A.E. (2020). Ob aposteriornoi otsenke normy pogreshnosti chislennogo rascheta na ansamble nezavi-simykh reshenii [On a posteriori estimation of the approximation error norm for an ensemble of independent solutions]. Sib. zhurn. vychisl. matematiki [Numerical Analysis and Applications], 23(3), 233–248. DOI: 10.15372/SJNM20200301. (In Russ., abstr. in Engl.).

Alekseev, A.K. & Bondarev, A.E. (2022). Otsenka lokal'noi pogreshnosti approksimatsii po naboru chislennykh reshenii [An estimation of point-wise approximation error using the set of numerical solutions]. Sib. zhurn. vychisl. matematiki [Numerical Analysis and Applications], 25(4), 343–358. DOI: 10.15372/SJNM20220401. (In Russ., abstr. in Engl.).

Belov, A.N., Turovtsev, V.V. & Orlov, Yu.D. (2019). Otsenka pogreshnostei chislennogo resheniya torsionnogo uravneniya Shredingera v bazise funktsii Mat'e [Errors in the numerical solution of the torsion Schrödinger equation with Mathieu functions basis set]. Vychisl. tekhnologii [Computational Technologies], 24(3), 33–43. DOI: 10.25743/ICT.2019.24.3.003. (In Russ., abstr. in Engl.).

Grishanov, A.N. (2018). Metod opredeleniya aposteriornykh otsenok pogreshnostei v raschetakh kompozitnykh obolochek s prime-neniem mnogosetochnykh konechnykh elementov [Method of Determining a Posteriori Error Estimation in Calculations of Com-posite Shells using Multigrid Finite Elements]. Vestn. Astrakh. gos. tekhn. un-ta [Vestnik of Astrakhan State Technical University], (4), 16–25. (In Russ., abstr. in Engl.).

Nadol'skii, V.V. & Podymako, V.I. (2022). Otsenka nesushchei sposobnosti stal'noi balki metodom konechnykh elementov pri sovmestnom deistvii lokal'nykh i sdvigovykh usilii [The evaluation of ultimate resistance of steel beams to combined shear and patch loading by finite element method]. Str-vo i rekonstruktsiya [Building and Reconstruction], 2(100), 26–43. DOI: 10.33979/2073-7416-2022-100-2-26-43. (In Russ., abstr. in Engl.).

Nadol'skii, V.V. & Vikhlyaev, A.I. (2022). Otsenka nesushchei sposobnosti balok s gofrirovannoi stenkoi metodom konechnykh elementov pri deistvii lokal'noi nagruzki [Using the Finite Element Method to evaluate the Load-bearing capacity of beams with a carrigated web subjected to local loading]. Vestn. MGSU [Vestnik MGSU], 17(6), 693–706. DOI: 10.22227/1997-0935.2022.6.693-706. (In Russ., abstr. in Engl.).

Fieber, A., Gardner, L. & Macorini, L. (2019). Design of structural steel members by advanced inelastic analysis with strain limits. Engineering Structures, (199). DOI: 10.1016/j.engstruct.2019.109624.

Silva, L., Rebelo, C., Nethercot, D., Marques, L. & Simões, R. (2009). Statistical evaluation of the lateral-torsional buckling resistance of steel I-beams, Part 2: Variability of steel properties. Journal of Constructional Steel Research, 65(4), 832–849. DOI: 10.1016/j.jcsr.2008.07.017.

Kala, Z., Melcher, J. & Puklický, L. (2009). Material and geometrical characteristics of structural steels based on statistical analysis of metallurgical products. Journal of Civil Engineering and Management, 15(3), 299–307. DOI: 10.3846/1392-3730.2009.15.299-307.

Kala, Z. (2009). Sensitivity assessment of steel members under compression. Engineering Structures, (31), 1344–1348. DOI: 10.1016/j.engstruct.2008.04.001.

Agüero, A., Pallarés, L. & Рallarés, F.J. (2015). Equivalent geometric imperfection definition in steel structures sensitive to flexural and/or torsional buckling due to compression. Engineering Structures, (96), 160–177. DOI: 10.1016/j.engstruct.2015.03.065.

Kala, Z. & Kala, J. (2011). Sensitivity Analysis of Stability Problems of Steel Structures using Shell Finite Elements and Nonlinear Computation Methods. AIP Conference Proceedings. DOI: 10.1063/1.3636974.

Solov'eva, A.A. & Solov'ev, S.A. (2021). Issledovanie razvitiya modelei sluchainykh velichin v raschetakh nadezhnosti stroitel'nykh konstruktsii pri nepolnoi statisticheskoi informatsii [A research into the development of models of random variables as part of the structural reliability analysis performed in the absence of some statistical information]. Vestn. MGSU [Vestnik MGSU], 16(5), 587–607. DOI: 10.22227/1997-0935.2021.5.587-607. (In Russ., abstr. in Engl.).