ВЕРИФИКАЦИЯ И ВАЛИДАЦИЯ КОМПЬЮТЕРНОЙ ВЫЧИСЛИТЕЛЬНОЙ МОДЕЛИ ДЛЯ ПРОЕКТИРОВАНИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ

##plugins.themes.bootstrap3.article.main##

В. В. НАДОЛЬСКИЙ

Аннотация

Выполнен обзор и анализ процедур верификации и валидации компьютерных вычислительных моделей с целью предоставить концептуальную основу и руководство по их реализации применительно к проектированию строительных конструкций. Представлено описание процедур верификации программного обеспечения компьютерного моделирования и компьютерных вычислительных моделей. Сформулированы основные этапы валидации для подтверждения применимости, прогностической способности и установления характеристик метрики точности компьютерных моделей. На основе анализа расчетного значения несущей способности сделан вывод о количестве экспериментов, необходимых для валидации не апробированных компьютерных моделей. В исследовании акцент сделан на описании процедур верификации и валидации для компьютерных моделей новых конструктивных решений и не стандартизированных параметров моделей. Однако приведенные здесь рекомендации также подходят и для более изученных конструктивных решений, при этом масштаб деятельности по верификации и валидации может быть уменьшен.

##plugins.themes.bootstrap3.article.details##

Как цитировать
НАДОЛЬСКИЙ, В. В. (2024). ВЕРИФИКАЦИЯ И ВАЛИДАЦИЯ КОМПЬЮТЕРНОЙ ВЫЧИСЛИТЕЛЬНОЙ МОДЕЛИ ДЛЯ ПРОЕКТИРОВАНИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ. Вестник Полоцкого государственного университета. Серия F. Строительство. Прикладные науки, (2), 42-50. https://doi.org/10.52928/2070-1683-2024-37-2-42-50
Выпуск
Раздел
Строительство
Биография автора

В. В. НАДОЛЬСКИЙ, Брестский государственный технический университет

канд. техн. наук, доц.

Библиографические ссылки

Graciano, C. & Ayestarán, A. (2013). Steel plate girder webs under combined patch loading, bending and shear. Journal of Con-structional Steel Research, (80), 202–212. DOI: 10.1016/j.jcsr.2012.09.018.

Kövesdi, B., Alcaine, J., Dunai, L., Mirambell, Е., Braun, B. & Kuhlmann, U. (2014). Interaction behaviour of steel I-girders Part I: Longitudinally unstiffened girders. Journal of Constructional Steel Research, (103), 327–343. DOI: 10.1016/j.jcsr.2014.06.018.

Nadolski, V., Marková, J., Podymako, V. & Sýkora, M. (2022). Pilot numerical analysis of resistance of steel beams under combined shear and patch loading. Proceedings of conference Modelling in Mechanics, 11–21.

Nadolski, V., Marková, J., Podymako, V. & Sýkora, M. (2023). On Development of Numerical Resistance Models of Thin-Web Steel Girders. Transactions of the VSB – Technical University of Ostrava, Civil Engineering Series, 23(1), 12–19. DOI: 10.35181/tces-2023-0003.

Kovacevic, S., Markovic, N., Sumarac, D. & Salatic, R. (2019). Influence of patch load length on plate girders. Part II: Numerical research. Journal of Constructional Steel Research, (158), 213–229. DOI: 10.1016/j.jcsr.2019.03.025.

Sinur, F. & Beg, D. (2013). Moment-shear interaction of stiffened plate girders – Tests and numerical model verification. Journal of Constructional Steel Research, (85), 116–129. DOI: 10.1016/j.jcsr.2013.03.007.

Estrada, I., Real, E. & Mirambell, E. (2007). General behaviour and effect of rigid and non-rigid end post in stainless steel plate girders loaded in shear. Part II: Extended numerical study and design proposal. Journal of Constructional Steel Research, (63), 985–996. DOI: 10.1016/j.jcsr.2006.08.010.

Nadol'skii, V.V. (2018). Raschet i konstruirovanie flantsevogo soedineniya elementov pryamougol'nogo secheniya, podverzhennykh tsentral'nomu rastyazheniyu [Calculation and Construction of the Flange Connection of Rectangular Elements Subjected to the Axial Tension]. Vestn. Polots. gos. un-ta. Ser. F: Priklad. nauki. Str-tvo [Vestnik of Polotsk State University. Part F, Constructions. Applied sciences], (16), 121–130. (In Russ., abstr. in Engl.).

Tur, V.V. & Nadol'skii, V.V. (2022). Kontseptsiya proektirovaniya stroitel'nykh konstruktsii na osnove chislennykh modelei soprotivleniya [The Concept of Design of Building Structures Based on Numerical Resistance Models]. Str-vo i rekonstruktsiya [Building and Reconstruction], 6(104), 78–90. DOI: 10.33979/2073-7416-2022-104-6-78-90. (In Russ., abstr. in Engl.).

Perel'muter, A.V. & Tur, V.V. (2017). Gotovy li my pereiti k nelineinomu analizu pri proektirovanii [Whether we are ready to proceed to a nonlinear analysis at designing?]. International Journal for Computational Civil and Structural Engineering, 13(3), 86–102. DOI: 10.22337/1524-5845-2017-13-3-86-102. (In Russ., abstr. in Engl.).

Matveev, A.D. (2018). Metod mnogosetochnykh konechnykh elementov v raschetakh kompozitnykh balok slozhnoi formy [Mul-tigrid finite element method in the calculations of composite beams of irregular shape]. In Reshetnevskie chteniya: v 2 ch. Ch. 1. Krasnoyarsk: SibGU im. M.F. Reshetneva. (In Russ.).

Ustimenko, E.E. & Skachkov, S.V. (2019). Metod konechnykh elementov modeli tonkostennogo profilya s polkami ob"emnogo fasonnogo elementa. Inzhener. vestn. Dona, 4(55), 54–63. (In Russ.).

Nadol'skii, V.V. (2023). Parametry chislennykh modelei nesushchei sposobnosti dlya stal'nykh elementov [Parameters of Numerical Resistance Models for Steel Elements]. Str-vo i rekonstruktsiya [Building and Reconstruction], 1(1), 43–56. DOI: 10.33979/2073-7416-2023-105-1-43-56. (In Russ., abstr. in Engl.).

Martynenko, T.M., Pronkevich, S.A., Martynenko, I.M. & Maksimovich, V.A. (2022). Analiz prochnosti uzlovykh soedinenii pri razlichnykh ispolneniyakh konstruktsii na osnove modelirovaniya v srede ANSYS [Strength Analysis of Junction Joints for Dif-ferent Design Performances on the Basis of Simulation in the Ansys Software]. Mekhanika. Issledovaniya i innovatsii, (15), 147–151. (In Russ., abstr. in Engl.).

Frolov, A.V., Voronov, M.V., Medel'tsev, A.A., Sedova, K.A. & Shapovalov, P.A. (2022). Modelirovanie napryazhenno-deformirovannogo sostoyaniya svarnykh soedinenii v ANSYS Mechanical [Modeling the stress-strain state of welded joints in ANSYS Mechanical]. Izv. TulGU. Tekhn. nauki [Izvestiya TulGU. Technical science], (11), 61–76. DOI: 10.24412/2071-6168-2022-11-61-76. (In Russ., abstr. in Engl.).

Palaev, A.G., Nosov, V.V. & Krasnikov, A.A. (2022). Modelirovanie raspredeleniya temperaturnykh polei i napryazhenii v svarnom soedinenii s primeneniem ANSYS [Simulating Distribution of Temperature Fields and Stresses in Welded Joint Using ANSYS]. Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov [Science and technology of pipeline transport of oil and petroleum products], 12(5), 461–469. DOI: 10.28999/2541-9595-2022-12-5-461-469. (In Russ., abstr. in Engl.).

Nadol'skii, V.V. (2023). Statisticheskie kharakteristiki pogreshnosti chislennykh modelei nesushchei sposobnosti dlya stal'nykh elementov [Statistical Characteristics of the Numerical Model Uncertainties for Steel Elements]. Str-tvo i rekonstruktsiya [Building and Reconstruction], 3(107), 17–34. DOI: 10.33979/2073-7416-2023-107-3-17-34. (In Russ., abstr. in Engl.).

Nadol'skii, V.V. (2023). Koeffitsienty nadezhnosti dlya nelineinykh modelei nesushchei sposobnosti balok s gibkoi stenkoi Realiability coefficients for nonlineer models of load-bearing capacity of beams with flexible web]. Vestn. MGSU [Vestnik MGSU], 18(6), 852–863. DOI: 10.22227/1997-0935.2023.6.852-863. (In Russ., abstr. in Engl.).

Britov, G.S. (2013). Verifikatsiya, validatsiya i testirovanie komp'yuternykh modelei lineinykh dinamicheskikh sistem. Infor-matsionno-upravlyayushchie sistemy, 2(63), 75–82. (In Russ.).

Sal'nikov A.V., Frantsuzov, M.S., Vinogradov, K.A., Pyatunin, K.R. & Nikulin, A.S. (2022). Verifikatsiya i validatsiya komp'yuternykh modelei [Digital Simulation Verification and Validation]. Izv. vyssh. ucheb. zavedenii. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 9(750), 110–115. (In Russ., abstr. in Engl.).

Nadol'skii, V.V. (2023). Otsenka raschetnogo znacheniya nesushchei sposobnosti stal'nykh elementov, proektiruemykh na osnove chislennykh modelei [Evaluating the design value of the bearing capacity of steel elements designed using numerical models]. Vestn. MGSU [Vestnik MGSU], 18(3), 367–378. DOI: 10.22227/1997-0935.2023.3.367-378. (In Russ., abstr. in Engl.).

Charikova, I.N. (2017). Osobennosti matematicheskogo modelirovaniya balochnykh sistem v interaktivnoi obrazovatel'noi srede. Prom. i grazhdanskoe str-vo, (11), 112–116. (In Russ.).

Temis, Yu.M., Solov'eva, A.V., Zhurenkov, Yu.N., Startsev, A.N., Temis, M.Yu., Yakushev, D.A., … Drozhzhin, M.V. (2021). Tsifrovoi dvoinik ustanovki dlya ispytanii tsentrobezhnogo kompressora malorazmernogo GTD [Digital twin of rig for testing of centrifugal compressor for small-scale gas turbine engine]. Aviats. dvigateli [Aviation Engines], 1(10), 5–16. DOI: 10.54349/26586061_2021_1_5. (In Russ., abstr. in Engl.).

Sal'nikov, A.V., Gordin, M.V., Shmotin, Yu.N., Nikulin, A.S., Makarov, P.V. & Frantsuzov, M.S. (2022). Tsifrovye dvoiniki – platforma dlya upravleniya zhiznennym tsiklom aviatsionnykh dvigatelei [Digital Twins – a Platform for Aircraft Engine Lifecycle Management]. Izv. vyssh. ucheb. zavedenii. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 4(745), 60–72. DOI: 10.18698/0536-1044-2022-4-60-72.(In Russ., abstr. in Engl.).

Borisov, E.A. & Teplov, A.V. (2020). Osobennosti proverki kachestva programmnogo obespecheniya. Nauka cherez prizmu vremeni, 1(34), 27–29. (In Russ.).

Karakhanova, A.A. & Malikova, A.S. (2019). Rassmotrenie printsipov provedeniya testirovaniya programmnogo obespecheniya [Consideration of Principles of Testing the Software]. Sinergiya Nauk, (41), 264–270. (In Russ., abstr. in Engl.).

Alekseev, A.K. & Bondarev, A.E. (2020). Ob aposteriornoi otsenke normy pogreshnosti chislennogo rascheta na ansamble nezavi-simykh reshenii [On a posteriori estimation of the approximation error norm for an ensemble of independent solutions]. Sib. zhurn. vychisl. matematiki [Numerical Analysis and Applications], 23(3), 233–248. DOI: 10.15372/SJNM20200301. (In Russ., abstr. in Engl.).

Alekseev, A.K. & Bondarev, A.E. (2022). Otsenka lokal'noi pogreshnosti approksimatsii po naboru chislennykh reshenii [An estimation of point-wise approximation error using the set of numerical solutions]. Sib. zhurn. vychisl. matematiki [Numerical Analysis and Applications], 25(4), 343–358. DOI: 10.15372/SJNM20220401. (In Russ., abstr. in Engl.).

Belov, A.N., Turovtsev, V.V. & Orlov, Yu.D. (2019). Otsenka pogreshnostei chislennogo resheniya torsionnogo uravneniya Shredingera v bazise funktsii Mat'e [Errors in the numerical solution of the torsion Schrödinger equation with Mathieu functions basis set]. Vychisl. tekhnologii [Computational Technologies], 24(3), 33–43. DOI: 10.25743/ICT.2019.24.3.003. (In Russ., abstr. in Engl.).

Grishanov, A.N. (2018). Metod opredeleniya aposteriornykh otsenok pogreshnostei v raschetakh kompozitnykh obolochek s prime-neniem mnogosetochnykh konechnykh elementov [Method of Determining a Posteriori Error Estimation in Calculations of Com-posite Shells using Multigrid Finite Elements]. Vestn. Astrakh. gos. tekhn. un-ta [Vestnik of Astrakhan State Technical University], (4), 16–25. (In Russ., abstr. in Engl.).

Nadol'skii, V.V. & Podymako, V.I. (2022). Otsenka nesushchei sposobnosti stal'noi balki metodom konechnykh elementov pri sovmestnom deistvii lokal'nykh i sdvigovykh usilii [The evaluation of ultimate resistance of steel beams to combined shear and patch loading by finite element method]. Str-vo i rekonstruktsiya [Building and Reconstruction], 2(100), 26–43. DOI: 10.33979/2073-7416-2022-100-2-26-43. (In Russ., abstr. in Engl.).

Nadol'skii, V.V. & Vikhlyaev, A.I. (2022). Otsenka nesushchei sposobnosti balok s gofrirovannoi stenkoi metodom konechnykh elementov pri deistvii lokal'noi nagruzki [Using the Finite Element Method to evaluate the Load-bearing capacity of beams with a carrigated web subjected to local loading]. Vestn. MGSU [Vestnik MGSU], 17(6), 693–706. DOI: 10.22227/1997-0935.2022.6.693-706. (In Russ., abstr. in Engl.).

Fieber, A., Gardner, L. & Macorini, L. (2019). Design of structural steel members by advanced inelastic analysis with strain limits. Engineering Structures, (199). DOI: 10.1016/j.engstruct.2019.109624.

Silva, L., Rebelo, C., Nethercot, D., Marques, L. & Simões, R. (2009). Statistical evaluation of the lateral-torsional buckling resistance of steel I-beams, Part 2: Variability of steel properties. Journal of Constructional Steel Research, 65(4), 832–849. DOI: 10.1016/j.jcsr.2008.07.017.

Kala, Z., Melcher, J. & Puklický, L. (2009). Material and geometrical characteristics of structural steels based on statistical analysis of metallurgical products. Journal of Civil Engineering and Management, 15(3), 299–307. DOI: 10.3846/1392-3730.2009.15.299-307.

Kala, Z. (2009). Sensitivity assessment of steel members under compression. Engineering Structures, (31), 1344–1348. DOI: 10.1016/j.engstruct.2008.04.001.

Agüero, A., Pallarés, L. & Рallarés, F.J. (2015). Equivalent geometric imperfection definition in steel structures sensitive to flexural and/or torsional buckling due to compression. Engineering Structures, (96), 160–177. DOI: 10.1016/j.engstruct.2015.03.065.

Kala, Z. & Kala, J. (2011). Sensitivity Analysis of Stability Problems of Steel Structures using Shell Finite Elements and Nonlinear Computation Methods. AIP Conference Proceedings. DOI: 10.1063/1.3636974.

Solov'eva, A.A. & Solov'ev, S.A. (2021). Issledovanie razvitiya modelei sluchainykh velichin v raschetakh nadezhnosti stroitel'nykh konstruktsii pri nepolnoi statisticheskoi informatsii [A research into the development of models of random variables as part of the structural reliability analysis performed in the absence of some statistical information]. Vestn. MGSU [Vestnik MGSU], 16(5), 587–607. DOI: 10.22227/1997-0935.2021.5.587-607. (In Russ., abstr. in Engl.).