USER ACTIVITY MODELING BASED ON MARKOV CHAIN FOR RADIO ENVIRONMENT MAP IN COGNITIVE RADIO NETWORKS

Main Article Content

Y. ADAMOVSKIY
R. BOHUSH
V. CHERTKOV
N. NAUMOVICH
I. STEGKO

Abstract

A technique for generating schedules of movement and data transmission sessions for subscriber devices of a simulation model for constructing a radio environment map for a cognitive cellular communication system is presented. The technique defines the subscriber’s behaviour as pseudo-random on small time scales, but periodically repeating over large intervals. The impact on the behaviour of several time parameters is taken into account: day types, such as working, weekend, holiday; weekday number; the week number of the month. Scenarios are generated using binary sequences obtained using a Markov chain and an impulse noise generator to change the subscribers state. The software model implementation is made in MatLab package, the results of studies are presented that confirm the correctness of the model and the possibility of using the proposed approach to form a radio environment map.

Article Details

How to Cite
ADAMOVSKIY, Y., BOHUSH, R., CHERTKOV, V., NAUMOVICH, N., & STEGKO, I. (2022). USER ACTIVITY MODELING BASED ON MARKOV CHAIN FOR RADIO ENVIRONMENT MAP IN COGNITIVE RADIO NETWORKS. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (11), 8-15. https://doi.org/10.52928/2070-1624-2022-39-11-8-15
Section
Информатика, вычислительная техника и управление
Author Biographies

R. BOHUSH, Euphrosyne Polotskaya State University of Polotsk

д-р техн. наук, доц.

V. CHERTKOV, Euphrosyne Polotskaya State University of Polotsk

канд. техн. наук, доц.

N. NAUMOVICH, Belarusian State University of Informatics and Radioelectronics, Minsk

канд. техн. наук

I. STEGKO, Belarusian State University of Informatics and Radioelectronics, Minsk

канд. техн. наук, доц.

References

Iqbal, M., Zahid, M., Habib, D., & John, L. K. (2019). Efficient Prediction of Network Traffic for Real-Time Applications. Journal of Computer Networks and Communications, 1–11. DOI: 10.1155/2019/4067135.

Zhao, Y., Hong, Z., Luo, Y., Wang, G., & Pu, L. (2018) Prediction-Based Spectrum Management in Cognitive Radio Networks. IEEE Systems Journal, 12(4), 3303–3314. DOI: 10.1109/JSYST.2017.2741448.

Adamovskiy, Y., Chertkov, V., & Bohush, R. (2021). Sostav i predstavlenie dannykh dlya modeli kognitivnoi sistemy svyazi na baze LTE. [Data composition and representation for cognitive communication system model based on LTE]. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya C, Fundamental'nye nauki [Herald of Polotsk State University. Series С. Fundamental sciences], (12), 13–20. (In Russ., abstr. in Engl.).

Adamovskiy, Y., Chertkov, V., & Bohush, R. (2022). Model' formirovaniya karty radiosredy dlya kognitivnoy sistemy svyazi na baze sotovoy seti LTE [Model for building of the radio environment map for cognitive communication system based on LTE]. Komp'yuternyye issledovaniya i modelirovaniye [Computer Research and Modeling], 1(14), 127–146. DOI: 10.20537/2076-7633-2022-14-1-127-146. (In Russ., abstr. in Engl.).

Fette, B. (2006). Cognitive radio technology. Amsterdam: Elsevier Inc. DOI: 10.1016/B978-0-7506-7952-7.X5000-4.

Jihong, Z., & Xiaoyuan, H. (2022). NTAM-LSTM models of network traffic prediction. In International Conference on Physics, Computing and Mathematical (ICPCM2021): Vol. 355 (1–10). DOI: 10.1051/matecconf/202235502007.

Trinh, H. D., Giupponi, L. & Dini, P. (2018). Mobile Traffic Prediction from Raw Data Using LSTM Networks. In 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (1827–1832). DOI: 10.1109/PIMRC.2018.8581000.

Sunday, I., Goodyer, E., Gow, J., Gongora, M., & Shell, J. (2015). Spectrum hole prediction and white space ranking using artificial neural network for cognitive radio application. International Journal of Scientific & Technology Research. 4(8). 319–325.

Tumuluru, V., Wang, P., Niyato, D. (2010). A neural network based spectrum prediction scheme for cognitive radio. In IEEE International Conference on Communications. DOI: 10.1109/ICC.2010.5502348.

Agarwal, A., Dubey, S., Asif, K., Gangopadhyay, R., & Debnath, S. (2016). Learning based primary user activity prediction in cognitive radio networks for efficient dynamic spectrum access. In International Conference on Signal Processing and Communications (SPCOM). DOI: 10.1109/SPCOM.2016.7746632.

Lin, Z., Jiang, X., Huang, L., & Yao, Y. (2009). A Energy Prediction Based Spectrum Sensing Approach for Cognitive Radio Networks. In 5th International Conference on Wireless Communications, Networking and Mobile Computing. DOI: 10.1109/WICOM.2009.5302514.

Nguyen, H., Zheng, G., Zheng, R., & Han, Z. (2013). Binary Inference for Primary User Separation in Cognitive Radio Networks. IEEE Transactions on Wireless Communications, 12(4), 1532–1542. DOI: 10.1109/TWC.2013.022213.112260.