USER ACTIVITY MODELING BASED ON MARKOV CHAIN FOR RADIO ENVIRONMENT MAP IN COGNITIVE RADIO NETWORKS
Article Sidebar
Main Article Content
Abstract
A technique for generating schedules of movement and data transmission sessions for subscriber devices of a simulation model for constructing a radio environment map for a cognitive cellular communication system is presented. The technique defines the subscriber’s behaviour as pseudo-random on small time scales, but periodically repeating over large intervals. The impact on the behaviour of several time parameters is taken into account: day types, such as working, weekend, holiday; weekday number; the week number of the month. Scenarios are generated using binary sequences obtained using a Markov chain and an impulse noise generator to change the subscribers state. The software model implementation is made in MatLab package, the results of studies are presented that confirm the correctness of the model and the possibility of using the proposed approach to form a radio environment map.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
R. BOHUSH, Euphrosyne Polotskaya State University of Polotsk
д-р техн. наук, доц.
V. CHERTKOV, Euphrosyne Polotskaya State University of Polotsk
канд. техн. наук, доц.
N. NAUMOVICH, Belarusian State University of Informatics and Radioelectronics, Minsk
канд. техн. наук
I. STEGKO, Belarusian State University of Informatics and Radioelectronics, Minsk
канд. техн. наук, доц.
References
Iqbal, M., Zahid, M., Habib, D., & John, L. K. (2019). Efficient Prediction of Network Traffic for Real-Time Applications. Journal of Computer Networks and Communications, 1–11. DOI: 10.1155/2019/4067135.
Zhao, Y., Hong, Z., Luo, Y., Wang, G., & Pu, L. (2018) Prediction-Based Spectrum Management in Cognitive Radio Networks. IEEE Systems Journal, 12(4), 3303–3314. DOI: 10.1109/JSYST.2017.2741448.
Adamovskiy, Y., Chertkov, V., & Bohush, R. (2021). Sostav i predstavlenie dannykh dlya modeli kognitivnoi sistemy svyazi na baze LTE. [Data composition and representation for cognitive communication system model based on LTE]. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya C, Fundamental'nye nauki [Herald of Polotsk State University. Series С. Fundamental sciences], (12), 13–20. (In Russ., abstr. in Engl.).
Adamovskiy, Y., Chertkov, V., & Bohush, R. (2022). Model' formirovaniya karty radiosredy dlya kognitivnoy sistemy svyazi na baze sotovoy seti LTE [Model for building of the radio environment map for cognitive communication system based on LTE]. Komp'yuternyye issledovaniya i modelirovaniye [Computer Research and Modeling], 1(14), 127–146. DOI: 10.20537/2076-7633-2022-14-1-127-146. (In Russ., abstr. in Engl.).
Fette, B. (2006). Cognitive radio technology. Amsterdam: Elsevier Inc. DOI: 10.1016/B978-0-7506-7952-7.X5000-4.
Jihong, Z., & Xiaoyuan, H. (2022). NTAM-LSTM models of network traffic prediction. In International Conference on Physics, Computing and Mathematical (ICPCM2021): Vol. 355 (1–10). DOI: 10.1051/matecconf/202235502007.
Trinh, H. D., Giupponi, L. & Dini, P. (2018). Mobile Traffic Prediction from Raw Data Using LSTM Networks. In 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (1827–1832). DOI: 10.1109/PIMRC.2018.8581000.
Sunday, I., Goodyer, E., Gow, J., Gongora, M., & Shell, J. (2015). Spectrum hole prediction and white space ranking using artificial neural network for cognitive radio application. International Journal of Scientific & Technology Research. 4(8). 319–325.
Tumuluru, V., Wang, P., Niyato, D. (2010). A neural network based spectrum prediction scheme for cognitive radio. In IEEE International Conference on Communications. DOI: 10.1109/ICC.2010.5502348.
Agarwal, A., Dubey, S., Asif, K., Gangopadhyay, R., & Debnath, S. (2016). Learning based primary user activity prediction in cognitive radio networks for efficient dynamic spectrum access. In International Conference on Signal Processing and Communications (SPCOM). DOI: 10.1109/SPCOM.2016.7746632.
Lin, Z., Jiang, X., Huang, L., & Yao, Y. (2009). A Energy Prediction Based Spectrum Sensing Approach for Cognitive Radio Networks. In 5th International Conference on Wireless Communications, Networking and Mobile Computing. DOI: 10.1109/WICOM.2009.5302514.
Nguyen, H., Zheng, G., Zheng, R., & Han, Z. (2013). Binary Inference for Primary User Separation in Cognitive Radio Networks. IEEE Transactions on Wireless Communications, 12(4), 1532–1542. DOI: 10.1109/TWC.2013.022213.112260.
Most read articles by the same author(s)
- D. GLUKHOV, R. BOHUSH, T. GLUKHOVA, SPARE MATRIX REPRESENTATION USING ASSOCIATIVE CONTAINERS C ++ STL LIBRARIES, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2020)
- A. HODOSEVICH, R. BOHUSH, CLIENT-SERVER SYSTEM FOR PARKING MANAGEMENT BASED ON VIDEO SURVEILLANCE DATA ANALYSIS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2022)
- R. BOHUSH, Y. ADAMOVSKIY, V. CHERTKOV, DATA COMPOSITION AND REPRESENTATION FOR COGNITIVE COMMUNICATION SYSTEM MODEL BASED ON LTE, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2021)
- R. BOHUSH, S. ABLAMEYKO, I. ZAHKARAVA, CALCULATION AND ANALYSIS OF MOVING OBJECT FEATURES FOR TRACKING IN VIDEO SEQUENCES, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2021)
- R. BOHUSH, I. ZAKHARAVA, Y. PASTUKHOV, D. PASTUKHOV, N. NAUMOVICH, SIMULATION OF EARTH REMOTE SENSING DATA COMPRESSION BASED ON BLOCK ADAPTIVE QUANTIZATION, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2019)
- R. BOHUSH, I. ZAHAROVA, V. CHERTKOV, N. NAUMOVICH, SPACECRAFT SAR DATA PROCESSING ALGORITHMS MODELING FOR TRANSMITTING AND RADAR IMAGE FORMATION, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2018)
- R. BOHUSH, I. ZAKHARAVA, CLIENT-SERVER SYSTEM FOR PEOPLE IDENTIFICATION AND TRACKING IN INDOOR BASED ON VIDEO DATA ANALYSIS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2020)
- M. IVANOU, V. CHERTKOV, MODELING AND PROCESSING OF THE RESPONSE OF A COMPLEX SENSING SIGNAL FROM A APPROXIMATED DEGREE OF NONLINEARITY, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2018)
- V. CHERTKOV, A. TOLMACHEV, SMALL-SIZED TEST GENERATOR NOISE, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2018)
- V. CHERTKOV, V. ZHELEZNIAK, ALGORITHM FOR DETERMINING THE DEGREE OF SIMILARITY OF IDENTIFICATION IMAGES FROM SECRET INTELLIGENCE DEVICE, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2018)