FEATURES STRUCTURE AND FORMAT OF PRESENTATION OF RADAR SATELLITE DATA TERRASAR-X
Article Sidebar
Main Article Content
Abstract
TerraSAR-X is one of the most demanded, because it allows obtaining radar images with high spatial resolution. The basic products of the satellites are processed to the level 1B radar data. It uses a set of files and directories to describe the data. The paper discusses the features of representation of primary and secondary data satellite TerraSAR-X, describes the structure of the output product of the satellite. The algorithm of writing data into format COSAR using MatLab software is presented.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
R. BOHUSH, Polotsk State University
кан. техн. наук, доц.
N. NAUMOVICH, Belarusian State University of Informatics and Radioelectronics, Minsk
кан. техн. наук
References
Радиолокационные системы землеобзора космического базирования // В.С. Верба [и др.]. – М. : Радиотехника, 2010. – 680 с.
Hein, A. Processing of SAR data: fundamentals, signal processing, interferometry: Springer / A. Hein. – Berlin, 2004. – P. 292.
Самые точные и детальные геопространственные данные. TerraSAR-X, TanDEM-X [Электронный ресурс]. – Режим доступа: https://innoter.com.
Document specifying the format of delivery, data structure, metadata information of TerraSAR-X data products [Electronic resource].
Geohazard Supersites and Natural Laboratories [Electronic resource].
Моделирование алгоритма формирования радиолокационного изображения на основе представленных в формате CEOS необработанных данных дистанционного зондирования Земли / Р.П. Богуш [и др.] // Вестник Полоцкого государственного университета. Сер. С, Фундаментальные науки. – 2016. – № 12. – C. 13–21.
Most read articles by the same author(s)
- Y. ADAMOVSKIY, R. BOHUSH, V. CHERTKOV, N. NAUMOVICH, I. STEGKO, USER ACTIVITY MODELING BASED ON MARKOV CHAIN FOR RADIO ENVIRONMENT MAP IN COGNITIVE RADIO NETWORKS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 11 (2022)
- R. BOHUSH, Y. ADAMOVSKIY, H. CHEN, REAL-TIME SMOKE DETECTION IN VIDEO, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 2 (2023)
- V. CHERTKOV, Р. П. БОГУШ, N. NAUMOVICH, TERRASAR-X PRODUCT CONVERSION TO HDF5 FORMAT, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2019)
- A. TOLMACHEV, V. CHERTKOV, ANTENNA SYSTEM FOR SMALL-SIZED TEST GENERATOR RADIO, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2018)
- O. GOLUBEVA, V. CHERTKOV, K. HARYST, G. PESHKOVA, SOFTWARE FOR AUTOMATION OF PERSONNEL PROFESSIONAL SELECTION AND EMPLOYEE ATTESTATION OF JSC «NAFTAN» BASED ON THE MODEL OF KEY COMPETENCIES, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 1 (2024)
- M. IVANOU, V. ZHELEZNYAK, V. CHERTKOV, REVIEW OF METHODS OF DETECTING NONLINEAR ELEMENTS BY THE NONLINEAR RADAR, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2017)
- R. BOHUSH, I. ZAKHARAVA, N. NAUMOVISH, SIMULATION OF COMPRESSION ECBAQ MODIFICATION WITH REPRESENTATION IN CEOS FORMAT OF EARTH REMOTE SENSING DAT, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2017)
- V. CHERTKOV, R. BOHUSH, A. ANDROSCHUK, NON-RECURSIVE IMAGE FILTERING USING FPGA, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2015)
- M. IVANOU, V. ZHELEZNIAK, V. CHERTKOV, METHOD OF INCREASING THE SENSITIVITY OF NON-LINEAR RADAR, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 4 (2016)
- N. LUPENKO, R. BOHUSH, H. CHEN, ANALYSIS OF METHODS FOR DISTANCE ESTIMATION TO AN OBJECT FROM A SINGLE VIDEO CAMERA IMAGE USING NEURAL NETWORKS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 2 (2024)