OPTIMIZATION ALGORITHM FOR A ROBOTIZED TECHNOLOGICAL COMPLEX FOR LASER CUTTING

Main Article Content

I. ILIUSHYN
М. KOZHEVNIKOV
A. GOSPOD

Abstract

An optimization algorithm for a robotic technological complex for laser cutting is proposed, while restrictions are imposed on the angles in the joints of the robot and restrictions that take into account the orientation of the cutting technological tool. The developed algorithm also makes it possible to minimize the scope of the robot's movements when forming the laser's trajectory. The effectiveness of the proposed approach is evidenced by the results of testing in the environment of computer simulation of robotic technological complexes on the example of a robotic manipulator FANUC M-710iC/50 with 6 degrees of freedom.

Article Details

How to Cite
ILIUSHYN, I., KOZHEVNIKOV М., & GOSPOD, A. (2023). OPTIMIZATION ALGORITHM FOR A ROBOTIZED TECHNOLOGICAL COMPLEX FOR LASER CUTTING. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (1), 8-16. https://doi.org/10.52928/2070-1624-2023-40-1-8-16
Section
Информатика, вычислительная техника и управление
Author Biographies

I. ILIUSHYN, Belarusian State University of Food and Chemical Technologies, Mogilev

канд. техн. наук

М. KOZHEVNIKOV, Belarusian State University of Food and Chemical Technologies, Mogilev

канд. техн. наук, доц.

References

Ershova I. V., Podolyak O. O., Danilov A. V. (2018). Faktory effektivnosti vnedreniya robototekhnicheskikh kompleksov na rossiiskikh predpriyatiyakh [The factors of the effectiveness of introducing robotic complex at Russian enterprises]. Izvestiya UGGU, 2(50), 130–134. DOI: 10.21440/2307-2091-2018-2-130-134. (In Russ., abstr. in Engl.).

Krut'ko P. D., Naumenko M. G. (2004). Algoritmy adaptivnogo upravleniya dvizheniem golonomnykh mekhanicheskikh sistem. Problemy mashinostroeniya i nadezhnosti mashin, (6), 76–86. https://naukarus.com/algoritmy-adaptivnogo-upravleniya-dvizheniem-golonomnyh-mehanicheskih-sistem. (In Russ.).

Krut'ko, P. D., Kuz'min, D. V. (2004). Upravlenie dvizheniem manipulyatora pri vypolnenii pogruzochnykh operatsii. Problemy mashinostroeniya i nadezhnosti mashin, (3), 91–97. https://www.studmed.ru/statya-krutko-pd-kuzmin-dvupravlenie-dvizheniem-manipulyatora-pri-vypolnenii-pogruzochnyh-operaciy_41cc6b60cf3.html. (In Russ.)

Pashkevich, A. P., Dolgui, A. B., Chumakov, O. A. (2004). Multiobjective optimization of robot motion for laser cutting applications. International J. of Computer Integrated Manufacturing, 17(2), 171–183. DOI: 10.1080/0951192031000078202.

Dolgui, А., Pashkevich, A. (2009). Manipulator motion planning for high speed robotic laser cutting. International J. of Production Research, 47(20), 5691–5715. DOI: 10.1080/00207540802070967.

Moharana, B., Gupta, R., Kushawaha, B. (2014). Optimization and Design of a Laser-Cutting Machine using Delta Robot. International J. of Engineering Trends and Technology, 10(4), 176–179. DOI: 10.14445/22315381/IJETT-V10P233.

Tsybul'kin, G. A. (2007). Avtomatizatsiya protsedur obucheniya robotov semeistva «PUMA». Avtomat. svarka, (6), 49–50. http://dspace.nbuv.gov.ua/handle/123456789/99420. (In Russ., abstr. in Engl.).

Dolgui, А., Pashkevich, A. (2008). Manufacturing process planning for laser cutting robotic systems. Proc. of the 17th World Congress The International Federation of Automatic Control, Vol. 41, Iss. 2 (14822–14827). DOI: 10.3182/20080706-5-KR-1001.02509.

Kozhevnikov, M. M., Chumakov, O. A., Ilyushin, I. E., Yurkina, A. A. (2021). Metodika optimizatsii polozheniya robotamanipulyatora v tekhnologicheskom protsesse lazernoi rezki [Method of optimization of the robot-manipulator position in the technological process of laser cutting]. Doklady BGUIR, 19(3), 49–57. https://doklady.bsuir.by/jour/article/view/3077?locale=ru_RU. (In Russ., abstr. in Engl.).

Pashkevich, A., Kazheunikau, M., Ruano, A. E. (2006). Neural network approach to collision free path planning for robotic manipulators. International J. of Systems Science, 37(8), 555–564. DOI: 10.1080/00207720600783884.

Kozhevnikov, M. M., Pashkevich, A. P., Chumakov, O. A. (2010). Planirovanie traektorii promyshlennykh robotov na osnove neironnykh setei [Trajectory planning for industrial robotic manipulators using neural network]. Doklady BGUIR, 4(50), 55–62. https://libeldoc.bsuir.by/handle/123456789/34989. (In Russ.).

Kozhevnikov, M. M., Gospod, A. V. (2012). Planirovanie traektorii promyshlennykh robotov na osnove neironnykh setei [Trajectory planning of industrial robots using neural network]. Issledovaniya naukograda, 1(1), 37–41. https://cyberleninka.ru/article/n/planirovanie-traektoriy-promyshlennyh-robotov-na-osnove-neyronnyh-setey. (In Russ., abstr. in Engl.).

Ilyushin, I. E., Kozhevnikov, M. M. (2016). Algoritmy upravleniya svarochnymi robotami-manipulyatorami na osnove statisticheskoi modeli konfiguratsionnogo prostranstva [Algorithms for control of welding robotic-manipulators based on a statistical model of a configuration space]. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya C, Fundamental'nye nauki [Herald of Polotsk State University. Series С. Fundamental sciences], (12), 22–29. https://elib.psu.by/handle/123456789/18980?locale=ru. (In Russ., abstr. in Engl.).