DE RHAM DECOMPOSITION AND COHOMOLOGY THREE-DIMENSIONAL HOMOGENEOUS SPACE PSEUDO-RIEMANNIAN MANIFOLDS

Main Article Content

N. MOZHEY

Abstract

In this paper we study three-dimensional homogeneous Riemannian (pseudo-Riemannian) manifolds. We describe de Rham decomposition and cohomology this manifolds. The cohomology allows us to answer the question of when closed forms on a manifold are exact. The local classification of homogeneous spaces is equivalent to the description of effective pairs of Lie algebras. We describe all invariant symmetric nondegenerate bilinear forms on those homogeneous spaces. A complete locally homogeneous Riemannian (pseudo-Riemannian) manifold is locally isometric to a globally homogeneous Riemannian (pseudo-Riemannian) space. Also we describe curvature Riemannian (pseudo-Riemannian) homogeneous spaces. We restrict ourselves to the case of a nontrivial stationary subgroup, all other pseudo-Riemannian homogeneous spaces in this dimension are just Lie groups with a left-invariant metric. We use the algebraic approach for description of manifolds, methods of the theory of Lie groups and Lie algebras and homogeneous spaces.

Article Details

How to Cite
MOZHEY, N. (2015). DE RHAM DECOMPOSITION AND COHOMOLOGY THREE-DIMENSIONAL HOMOGENEOUS SPACE PSEUDO-RIEMANNIAN MANIFOLDS. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (4), 71-80. Retrieved from https://journals.psu.by/fundamental/article/view/5588
Author Biography

N. MOZHEY, Kazan Federal University, Russia

канд. физ.-мат. наук, доц.

References

Онищик, А.Л. Топология транзитивных групп Ли преобразований / А.Л. Онищик. – М.: Физ.-мат. лит., 1995. – 344 с.

Kobayashi, S. Foundations of Differential Geometry / S. Kobayashi, K. Nomizu. – New-York–London, 1963. – V. I; 1969. – Vol. II.

Mostow, G.D. The extensibility of local Lie groups of transformations and groups on surfaces / G.D. Mostow // Ann. Math., Vol. 52, no. 3, pp. 606–636 (1950).

Three-dimensional isotropically-faithful homogeneous spaces / B. Komrakov [et al.], Vol. I–III, Preprints Univ. Oslo, no. 35–37, (1993).

Kobayashi, S. Foundations of differential geometry John Wiley and Sons / S. Kobayashi, K. Nomizu. – New York, 1963. – Vol. 1; 1969. – Vol. 2.

Nomizu, K. Studies on riemannian homogeneous spaces Nagoya Math / K. Nomizu // J., 1955, 9, рp. 43–56.

Кostant, В. On differential geometry and homogeneous spaces / В. Кostant // Proc. Nat. Acad. Sci. USA, 42 (1956), pр. 258–261, 354–357.

Lichnerowicz, А. Espaces homogenes riemannien et reductibilite / А. Lichnerowicz // C.R. 242(1954), pр. 1410–1413.

Greub, W. Connections, curvature and cohomology / W. Greub, S. Halperin, R. Vanstоne // Cohomology of principal bundles and homogeneous spaces. – N. Y.– L., 1975. – Vol. 3.