PARAMETERS OF THE PERTURBED STATE OF THE DENDRITE TIP IN DEEPLY SUPERCOOLED NICKEL AND COPPER MELTS

Main Article Content

O. SHABLOVSKY
D. KROLL

Abstract

The object of study is the morphological stability of the tip of a free dendrite in a supercooled melt of a pure substance. Areas of deep supercooling are considered: for nickel DT > 166 K, for copper – DT > 180 K. A distinctive feature of the processes being studied is the presence of two propagation velocities of small disturbances (velocities of “sound”). The dependences of these rates on the supercooling of the melt were determined. The periodic and coordinate-aperiodic modes of perturbation of the growth line have been studied in detail. For these stable regimes, the possibility of observing the same speed of the disturbance wave in two processes, differing from each other in the size of the spatial inhomogeneity of the background in front of the wave and the characteristic wave attenuation times, was discovered. It is shown that aperiodic instability appears if, after the passage of the wave front, the width of the growth line inhomogeneity zone decreases. The resonant excitation mode of the dendrite tip demonstrates important differences between the properties of the nickel and copper melts. First of all, this relates to the temperature dependences of the resonant frequency and the speed of a standing wave formed in the vicinity of the vertex. Numerical calculations are presented and graphic information is presented illustrating the patterns of growth of nickel and copper dendrites.

Article Details

How to Cite
SHABLOVSKY, O., & KROLL, D. (2024). PARAMETERS OF THE PERTURBED STATE OF THE DENDRITE TIP IN DEEPLY SUPERCOOLED NICKEL AND COPPER MELTS. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (1), 60-68. https://doi.org/10.52928/2070-1624-2024-42-1-60-68
Section
Электрофизика, электрофизические установки (технические науки)
Author Biography

O. SHABLOVSKY, Sukhoi State Technical University of Gomel

д-р физ.-мат. наук, проф.

References

Herlach, D. M., Galenko, P., & Holland-Moritz, D. (2007). Metastable Solids from Undercooled Melts. Oxford: Pergamon.

Zhou, D., Kasas-Baskes, H., & Lebon, Dzh. (2006). Rasshirennaja neobratimaja termodinamika. Moscow: Reguljarnaja i haoticheskaja dinamika; Izhevsk: Institut komp'juternyh issledovanij. (In Russ.).

Brener, E. A., & Mel’nikov, V. I. (1991). Pattern selection in two-dimensional dendritic growth. Advances in Physics, 40(1), 53–97. DOI: 10.1080/00018739100101472.

Losert, W., Shi, B., Cummins, H., & Warren, J. A. (1996). Spatial period-doubling instability of dendritic arrays in directional solidification. Phys. Rev. Lett., 77(5), 889–891. DOI: 10.1080/00018739100101472.

Martjushev, L. M., Seleznev, V. D., Skopinov, S. A. Kineticheskie vozvratnye fazovye perehody pri dendritnom roste kristallov v dvumernoj srede s fazovym rassloeniem. Pis'ma v Zhurnal teoreticheskoj fiziki [Technical Physics Letters], 23(13), 1–6. (In Russ.). http://journals.ioffe.ru/articles/viewPDF/33532. (In Russ.).

Shibkov, A. A., Zheltov, M. A., & Zolotov, A. E. (2011). Morphological selection of Euclidean and fractal patterns of nonequilibrium growth of ice in supercooled water. Crystallography Reports, 56(2), 335–338. DOI: 10.1134/S1063774510061161.

Mullis, A. M. (2015). Deterministic side-branching during thermal dendritic growth. IOP Conf. Series: Materials Science and Engineering, (84), 1–9. DOI: 10.1088/1757-899X/84/1/012071.

Chernov, A.A., & Pil'nik, A.A. (2015). Mechanism of growth of a crystalline nucleus in a supercooled melt at large deviations from equilibrium. JETP Letters, 102(8), 526–529. DOI: 10.1134/S0021364015200023.

Glicksman, M. E. (2016). Capillary-mediated interface perturbations: Deterministic pattern formation. J. of Crystal Growth, 450, 119–139. DOI: 10.1016/j.jcrysgro.2016.03.031.

Liu, S., Liu, L., Li, S., Wang, J., & Liu, W. (2019). Free dendritic growth model based on nonisothermal interface and microscopic solvability theory. Transactions of Nonferrous Metals Society of China, 29(3), 601–607. DOI: 10.1016/S1003-6326(19)64969-1.

Strickland, J., Nenchev, B., & Dong, H. (2020). On Directional Dendritic Growth and Primary Spacing – A Review. Crystals, 10(7), 627–656. DOI: 10.3390/cryst10070627.

Kurz, W., Rappaz, M., & Trivedi, R. (2021). Progress in modeling solidification microstructures in metals and alloys. Part II: dendrites from 2001 to 2018. Int. Mater. Rev., 66(1), 30–76. DOI: 10.1080/09506608.2020.1757894.

Shablovskij O. N., Krol' D. G. (2022). Dinamika neustojchivosti volnovyh vozmushhenij i bokovoe vetvlenie dendrita v pereohlazhdennom rasplave. Uspehi prikladnoj fiziki. [Dynamics of instability of wave disturbances and lateral branching of a dendrite in a supercooled melt]. Uspehi prikladnoj fiziki [Advances in Applied Physics], (2), 189–202. https://elibrary.ru/item.asp?id=48451163. (In Russ., abstr. in Engl.).

Wang, X., Li, K., Qin, X., Li, M., Liu, Y., An, Y., … Gong, J. (2022). Research on Mesoscale Nucleation and Growth Processes in Solution Crystallization: A Review. Crystals, (12), 1234–1255. DOI: 10.3390/cryst12091234.

Vasil'ev, V. A., Mitin, B. S, Pashkov, I. N., Serov, M. M., Skuridin, A. A., Lukin, A. A., & Jakovlev, V. B. (1998). Vysokoskorostnoe zatverdevanie rasplava (teorija, tehnologija i materialy). Moscow: Intermet Inzhiniring. (in Russ.).

Shablovskij, O. N. (2014). Kinetika rosta vershiny dendrita v gluboko pereohlazhdennom rasplave. Chast' II. Analiticheskaja struktura vozmushhenij linii rosta [Kinetics of dendrite tip growth in a deeply supercooled melt. Part II. Analytical structure of growth line disturbances]. Uspehi prikladnoj fiziki [Advances in Applied Physics], 2(1), 12–17. (In Russ., abstr. in Engl.). https://advance.orion-ir.ru/UPF-14/1/UPF-2-1-12.pdf.

Shablovskij, O. N. (2023). Oblast' ustojchivosti vozmushhennogo sostojanija linii rosta dendrita v gluboko pereohlazhdennom rasplave [Region of Stability of Perturbed State of Dendrite Growth Line in Deeply Supercooled Melt]. Vestnik Gomel'skogo gosudarstvennogo tehnicheskogo universiteta imeni P. O. Suhogo [Bulletin Sukhoi State Technical University of Gomel], (1), 5–12. (In Russ.). https://elib.gstu.by/handle/220612/27778.