INTEGRAL TRANSFORMATION WITH THE MITTAG–LEFFLER FUNCTION IN SPACES OF LEBESGUE-MEASURABLE FUNCTIONS
Article Sidebar
Main Article Content
Abstract
One integral transformation with a special Mittag – Leffler function in the kernel is considered. Using the Mellin transformation technique, we show that it is a special case of the one-dimensional H-transformation. Based on the theory of the H-transformation, the properties of the considered integral transformation in the spaces of integrable functions with a weight on the semiaxis are investigated.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
S. SITNIK, The National Research University "Belgorod State University" (BelSU), Russia
д-р физ.-мат. наук, доц.
O. SKOROMNIK, Euphrosyne Polotskaya State University of Polotsk
канд. физ.-мат. наук, доц.
References
Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1987). Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya [Integrals and derivatives of fractional order and some of their applications]. Minsk: Nauka i tekhnika. (In Russ.).
Paneva-Konovska, J. (2017). From Bessel to multi-index Mittag-Leffler functions: enumerable families, series in them and convergence. World Scientific.
Gorenflo, R., Kilbas, A. A, Mainardi, F., & Rogosin, S. (2020). Mittag-Leffler Functions, Related Topics and Applications. Springer. DOI: 10.1007/978-3-662-61550-8.
Kilbas, A. A., & Saigo, M. H. (2004). H-Transforms. Theory and Applications. London [etc.]: Chapman and Hall. CRC Press.
Rooney, P. G. (1983). On integral transformations with G-function kernels. Proc. Royal Soc. Edinburgh. Sect. A., 93, 265–297.
Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (Ed.). (2006). Theory and applications of fractional differential equations. North–Holland Mathematics Studies (Vol. 204). Amsterdam: Elsevier.xv.
Skoromnik, O. V. (2019). Integral'nye preobrazovaniya s funktsiyami Gaussa i Lezhandra v yadrakh i integral'nye uravneniya pervogo roda. – Novopolock: PGU. (In Russ.).