SHOCK-WAVE PROCESSES IN METALS DURING MECHANICAL TREATMENT USING THE ELECTROPLASTIC EFFECT

Main Article Content

O. SKVORTSOV
V. STASHENKO
V. SAVENKO

Abstract

When processing metals by pressure, various types of additional physical influence are used in the form of heating, mechanical shock, vibration, acoustic ultrasonic irradiation, and electric pulse influence. Such impacts, in particular, are associated with manifestations of the oscillatory motion of material particles, which can be considered as a trigger for the movement of dislocations and structural inhomogeneities of the material. Such inhomogeneities can be in conditions of a residual mechanical stress state, which, under oscillatory influence, leads to their movement and transition to a more stable state. Such processes are accompanied by improved mechanical properties and deformation processes with increased plasticity. The work examines some features of the manifestation of such oscillatory processes that arise under additional external influences, which can be used in the development of metal forming technologies in order to reduce resistance to deformation and improve the structure of materials.

Article Details

How to Cite
SKVORTSOV, O., STASHENKO, V., & SAVENKO, V. (2025). SHOCK-WAVE PROCESSES IN METALS DURING MECHANICAL TREATMENT USING THE ELECTROPLASTIC EFFECT. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (1), 61-69. https://doi.org/10.52928/2070-1624-2025-44-1-61-69
Author Biographies

O. SKVORTSOV, Mechanical Engineering Research Institute of the RAS, Moscow, Russia

канд. техн. наук

V. STASHENKO, Mechanical Engineering Research Institute of the RAS, Moscow, Russia

канд. физ.-мат. наук

V. SAVENKO, Mozyr State Pedagogical University named after I. P. Shamyakin

д-р техн. наук, проф.

References

Sun, L., Huang, L., Wu, P., Huang, R., Fang, N., Xu, F., & Xu, K. (2023). Progress on the Effect and Mechanism of Ultrasonic Impact Treatment on Additive Manufactured Metal Fabrications. Crystals, 13(7), 995. DOI: 10.3390/cryst13070995.

Yang, W., Xu, Z., Xiong, F., Yang, H., Guo, X., & San, H. (2024). Effect of Ultrasonic Vibration on Tensile Mechanical Properties of Mg-Zn-Y Alloy. Crystals, 14(1), 39. DOI: 10.3390/cryst14010039.

Givi, M., Ghasemi, A. H., & Abbasi, M. (2019). The effect of friction stir vibration processing on microstructure and mechanical properties of Al5052/SiC surface nano composite. Iranian Journal of Manufacturing Engineering, 6(1), 1–11. (In Persian, abstr. in Engl.)

Sutton, A. P., & Todorov, T. N. (2021). Theory of electroplasticity based on electromagnetic induction. Physical review materials, 5(11), 113605. DOI: 10.1103/PhysRevMaterials.5.113605.

Dobras, D., Bruschi, S., Simonetto, E., Rutkowska-Gorczyca, M., & Ghiotti, A. (2021). The Effect of Direct Electric Current on the Plastic Behavior of AA7075 Aluminum Alloy in Different States of Hardening. Materials, 14(1), 73. DOI: 10.3390/ma14010073.

Bathias, C., & Paris, P. C. (2004). Gigacycle Fatigue in Mechanical Practice (1st ed.). CRC Press. DOI: 10.1201/9780203020609.

Beletskii, E. N. (2022). Povrezhdennost' konstruktsionnoi stali v usloviyakh smeshannykh mod nagruzheniya posle predvaritel'nogo tsiklicheskogo nagruzheniya. Fiziko-khimiya i tekhnologiya neorganicheskikh materialov. In XIX Rossiiskaya ezhegodnaya konferentsiya molodykh nauchnykh sotrudnikov i aspirantov (s mezhdunar. uchastiem) (75–77). Moscow: Buki Vedi. (In Russ.).

Lenk, A., & Renitts, Yu. (1976). Mekhanicheskie ispytaniya priborov i apparatov. Moscow: Mir. (In Russ.).

Morozenko, V. N., & Kuznetsov, E. V. (2000). Rezonansnyi vibroplasticheskii effekt. Metally, (3), 104–107. (In Russ.).

Misochenko, A. A., & Stolyarov, V. V. (2023). Primenenie impul'snogo toka v protsessakh deformatsionnoi obrabotki materialov. Mashiny, tekhnologii i materialy dlya sovremennogo mashinostroeniya. In R. F. Ganiev (Eds.), Sbornik tezisov dokladov konferentsii, posvyashchennoi 85-letiyu Instituta mashinovedeniya im. A. A. Blagonravova RAN (138). Moscow: IMASh RAN. (In Russ.).

Sarychev, V. D., Konovalov, S. V., Gromov, V. E., & Efimova, I. E. (2002). Model' prokhozhdeniya ul'trazvuka v srede s ustalostnymi defektami. In Defekty struktury i prochnost' kristallov (27). Chernogolovka. (In Russ.).

Skvortsov, O. B., Stashenko, V. I., & Troitskii, O. A. (2021). Elektroplasticheskii effekt i vzaimodeistvie elektricheskogo impul'sa s provodnikom [Electroplastic effect and interaction of an electrical impulse with a conductor]. Pis'ma o materialakh [Letters on Materials], 11(4), 473–478. DOI: 10.22226/2410-3535-2021-4-473-478.

Savenko, V. S., & Troitskii, O. A. (2016). Fizicheskie i tekhnologicheskie osnovy elektroplasticheskoi deformatsii metallov. Mozyr': MGPU im. I. P. Shamyakina. (In Russ.).