MODELING OF CRACKING IN REINFORCED CONCRETE STRUCTURES BASED ON DEFORMATION CALCULATION MODEL
Article Sidebar
Main Article Content
Abstract
The article proposes a method for modeling crack formation in reinforced concrete structures, based on the integration of a nonlinear deformation model of a reinforced concrete element and the finite element method. Within the framework of such integration, it becomes possible not only to take into account the change in the stiffness of finite elements under the action of the load and the corresponding redistribution of internal forces, but also to take into account the redistribution of stresses over the sections, the change in the field of rotation of the principal stresses in the process of crack propagation. The paper proposes a method of combined strategies that makes it possible to effectively solve the system of equations of equilibrium and compatibility of deformations of the design model.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
D. GLUKHOV, Polotsk State University
канд. техн. наук, доц.
D. LAZOUSKI, Polotsk State University
д-р техн. наук, проф.
Y. LAZOUSKI, Polotsk State University
канд. техн. наук, доц.
References
Herbrand, Martin (2017). Shear strength models for reinforced and prestressed concrete members. DOI: 10.18154/RWTH-2017-06170.
Xenos, D., Modelling the failure of reinforced concrete with nonlocal and crack band approaches using the damageplasticity model CDPM2 [Electronic resource] / D. Xenos, P. Grassl // Finite Elements in Analysis and Design. – 2016. – Vol. 117–118. – P. 11–20. – DOI: https://doi.org/10.1016/j.finel.2016.04.002.
Uncertainty of the smeared crack model applied to RC beams [Electronic resource] / A. Rimkus [et al.] // Engineering Fracture Mechanics (IF 3.426). – 2020. – Vol. 233. – DOI: https://doi.org/10.1016/j.engfracmech.2020.107088.
Sasmal, S. Nonlinear FE simulations of structural behavior parameters of reinforced concrete beam with epoxy-bonded FRP [Electronic resource] / S. Sasmal, S. Kalidoss // J. of the Mechanical Behavior of Materials. – 2015. – Vol. 24, № 1-2. – P. 35–46. – DOI: https://doi.org/10.1515/jmbm-2015-0004.
Collins, M.P. Pre-stressed Concrete Structures / M.P. Collins, D. Mitchell. – N.J. : Prentice-Hall Inc. : Englewood Cuffs, 1991. – 766 p.
General Shear Design Method / M.P. Collins [et al.] // ACI Struct. Journ. – 1996. – V. 93, № 1. – P. 36–45.
Vecchio, F.J. Analysis based on the Modified Compression Field Theory / F.J. Vecchio // IABSE Colloq. On Structural Concrete. – 1991. – V. 62. – P. 321–326.
Vecchio, F.J. The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear / F.J. Vecchio, M.P. Collins // ACI Journal. – 1986. – Vol. 83, № 2, – P. 219–231.
Лазовский, Е.Д. Усиление изгибаемых железобетонных элементов в зоне среза : автореф. дис. … канд. техн. наук : 05.23.01 / Е.Д. Лазовский ; Бел. нац. техн. ун-т. – Минск, 2014. – 24 с.
Глухова, Т.М. Комбинирование стратегий поиска решений в задачах расчета систем нелинейных сингулярных уравнений /Вестн. Полоц. гос. ун-та. Сер. С, Фундам. науки. – 2013. – № 4. – С. 22–27.
Bentz, E.C. Sectional Analysis of Reinforced Concrete Members : PhD Thesis / E.C. Bentz ; Department of Civil Engineering, University of Toronto. – 2000. – 310 p.
Most read articles by the same author(s)
- D. GLUKHOV, R. BOHUSH, T. GLUKHOVA, SPARE MATRIX REPRESENTATION USING ASSOCIATIVE CONTAINERS C ++ STL LIBRARIES, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2020)
- D. GLUKHOV, Т. М. ГЛУХОВА, A. LUKYANOV, APPLICATION OF GENETIC ALGORITHMS IN THE PROBLEMS OF APPROXIMATION OF COMPLEX MULTIDIMENSIONAL DEPENDENCES AND IDENTIFICATION OF THE PARAMETERS OF THEORETICAL MODELS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2019)
- D. GLUKHOV, T. GLUKHOVA, OPTIMIZATION ALGORITHM MODEL OF THE NETWORK TRANSPORTING OF LARGE DIMENSION TO THE PROBLEM OF CALCULATING GAS RESERVES, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2016)
- D. GLUKHOV, R. BOGUSH, T. GLUKHOVA, FORMAL LANGUAGE OF GENERATOR DESCRIPTION OF THE THREE-DIMENSIONAL LANDSCAPE ON THE BASIS OF THE COMPOSITIONS OF HARMONIC FUNCTIONS, Vestnik of Polotsk State University. Part C. Fundamental Sciences: No. 12 (2015)