НАКОПЛЕНИЕ РАДИОНУКЛИДОВ В СМЕННЫХ ДЕТАЛЯХ И ВОДНОЙ МИШЕНИ ЦИКЛОТРОНА

##plugins.themes.bootstrap3.article.main##

А. Н. КИЙКО
С. А. ВАБИЩЕВИЧ
Н. В. ВАБИЩЕВИЧ
Д, И. БРИНКЕВИЧ

Аннотация

Рассмотрено накопление нежелательных долгоживущих радионуклидов при производстве радиофармпрепаратов на основе 18F с использованием циклотрона IBA Cyclone 18/9 HC. С помощью спектрометрии гамма-излучения высокого разрешения с детекторами HPGe проведена идентификация радионуклидов и оценка активности в активируемых компонентах (стриппер, входное окно мишени) «медицинского» 18-Мэв циклотрона IBA Cyclone 18/9. В регенерированной воде идентифицированы более 20 нежелательных радионуклидов. Описаны различные механизмы попадания долгоживущих радионуклидов в облученную воду. Полученные результаты имеют важное значение для оптимизации методов обращения с радиоактивными отходами при производстве радиофармпрепаратов и, как следствие, минимизации дозовых нагрузок персонала.

##plugins.themes.bootstrap3.article.details##

Как цитировать
(1)
КИЙКО, А. Н.; ВАБИЩЕВИЧ, С. А.; ВАБИЩЕВИЧ, Н. В.; БРИНКЕВИЧ, Д. И. НАКОПЛЕНИЕ РАДИОНУКЛИДОВ В СМЕННЫХ ДЕТАЛЯХ И ВОДНОЙ МИШЕНИ ЦИКЛОТРОНА. Вестник Полоцкого государственного университета. Серия С. Фундаментальные науки 2022, 38, 69-80.
Раздел
Физико-математические науки (Физика)
Биографии авторов

С. А. ВАБИЩЕВИЧ, Полоцкий государственный университет

канд. физ.-мат. наук, доц.

Д, И. БРИНКЕВИЧ, Белорусский государственный университет, Минск

канд. физ.-мат. наук

Библиографические ссылки

Papash, A. I., & Alenitskii, Yu. G. (2008). Kommercheskie tsiklotrony. Chast' 1. Kommercheskie tsiklotrony v diapazone energii ot 10 do 30 MeV dlya proizvodstva izotopov [Commercial cyclotrons. Part 1. Commercial cyclotrons in the energy range from 10 to 30 MeV for isotope production]. Fizika elementarnykh chastits i atomnogo yadra [Physics of Elementary Particles and Atomic Nuclei]: Vol. 39, iss 4 (1150–1214). (In Russ.).

Kodina, G. E., & Krasikova, R. N. (2014). Metody polucheniya radiofarmatsevticheskikh preparatov i radionuklidnykh generatorov dlya yadernoi meditsiny [Methods for obtaining radiopharmaceuticals and radionuclide generators for nuclear medicine]. Moscow: MEI. (In Russ.).

Ryzhov, S. A., Vodvatov, A. V., & Druzhinina, Yu. V. (2021). K voprosu o bezopasnosti personala v otdelenii yadernoi meditsiny. [On the issue of personnel safety in the nuclear medicine department]. In G. E. Kodina & A. A. Labushkina (Eds.) Aktual'nye problemy razrabotki, proizvodstva i primeneniya radiofarmatsevticheskikh preparatov: sb. tez. dokl. [Actual problems of development, production and use of radiopharmaceuticals] (54). Moscow: FMBC – FMBA. (In Russ.).

Brinkevich, S. D., Sukonko, O. G., Chizh, G. V., & Naumovich, A. S. (2013). Pozitronno-emissionnaya tomografiya. Chast' 1: Kharakteristika metoda. Poluchenie radiofarmpreparatov [Positron emission tomography. Part 1: Method description. Production of radiopharmaceuticals]. Mediko-biologicheskie problemy zhiznedeyatel'nosti [Medical and Biological Problems of Life Activity], (2), 129–137. (In Russ., abstr. in Engl.).

Sunderland, J. J., Erdahl, C. E., Bender, B. R., Sensoy, L., & Watkins, G. L. (2012). Consideration, measurements and logistics associated with low-energy cyclotron decommissioning. 14th Intern. Workshop on Targetry and Target Chemistry. AIP Conf. Proc: V. 1509. (16–20). DOI: 10.1063/1.4773931.

Brinkevich, D. I., Maliborski, A. Ya., & Brinkevich, S. D. (2019). Activation of the cooling circuit water of the Cyclone 18/9-HC cyclotron during the production of 18F. Physics of atomic nuclei, 82(12), 1714–1720. DOI: 10.1134/S1063778819120044.

Shiomi, T., Azeyanagi Y., Yamadera, A., & Nakamura, T. (2000). Measurements of residual radioactivity of machine elements and concrete on the cyclotron decommissioning. J. Nuclear Science Technology, (1), 357–361.

Brinkevich, S. D., Brinkevich, D. I., & Kiiko A. N. (2019). Aktivatsionnye radionuklidy pri obluchenii niobievoi misheni na tsiklotrone Cyclone 18/9 HC [Activation radionuclides during irradiation of a niobium target at the Cyclone 18/9 HC cyclotron]. Yadernaya fizika i inzhiniring [Nuclear Physics and Engineering], 10(6), 574–580. (In Russ., abstr. in Engl.).

Bowden, L., Vintro, L. L., Mitchell, P. I., O`Donnell, R. G., Seymour, A. M., & Duffy G. J. (2009). Radionuclide impurities in proton-irradiated [18O]H2O for the production of 18F-: Activities and distribution in the [18F]FDG synthesis process. Applied Radiation and Isotopes: Vol. 67. (248–255).

Kilian, K., Pegier, M., Pecal, A., & Pyrzynska, K. (2016). Distribution and separation of metallic and radionuclidic impurities in the production of 18F-fluorodeoxyglucose. J. of Radioanalytical and Nuclear Chemistry, 307(2), 1037–1043.

Avila-Rodriguez, M. A., Wilson, J. S., & McQuarrie S. A. (2008). A quantitative and comparative study of radionuclidic and chemical impurities in water samples irradiated in a niobium target with Havar vs niobium-sputtered Havar as entrance foils. Applied Radiation and Isotopes, 66(12), 1775–1780.

Schlyer, D. J., Firouzbakht, M. L., & Wolf, A. P. (1993). Impurities in the [18O]water target and their effect on the yield of an aromatic displacement reaction with [18F]fluoride. Applied Radiation and Isotopes, 44(12), 1459–1465.

Krot, V. O., Brinkevich, S. D., Brinkevich, D. I., & Ivanyukovich, A. A. (2021). Razdelenie dolgozhivushchikh radionuklidov na anionoobmennom kartridzhe QMA light pri proizvodstve radiofarmpreparatov na osnove 18F [Separation of long-lived radionuclides on a QMA light anion exchange cartridge in the production of radiopharmaceuticals based on 18F]. Radiokhimiya [Radiochemistry], 63(2), 193–200. (In Russ., abstr. in Engl.).

Brinkevich, S. D., Krot, V. O., Brinkevich, D. I., Tugai, O. V., Edimecheva, I. P., & Ivanyukovich, A. A. Pererabotka obluchennoi vody [18O]H2O v usloviyakh PET-tsentra [Processing of irradiated water [18O]H2O in a PET center]. Radiokhimiya [Radiochemistry], 61(4), 344–350.

Remetti, R., Burgio, N. T., Maciocco, L., Arcese, M., & Filannino, M. A. (2011). Monte Carlo simulation and radiometric characterization of proton irradiated [18O]H2O for the treatment of the waste streams originated from [18F]FDG synthesis process. Applied Radiation and Isotopes, 69, 1046–1051.

Dodd, A. C., Shackelton, R. J., Carr, D. A., & Ismail, A. (2017). Activation of air and concrete in medical isotope production facilities. AIP Conference Proceedings: Vol. 1845. DOI: 10.1063/1.4983537.

Krot, V. O., Tugai, O. V., Brinkevich, D. I., Brinkevich, S. D., Chizh, G. V., & Vabishchevich, S. A. (2018). Obrashchenie s vodnymi radioaktivnymi otkhodami pri proizvodstve radiofarmpreparatov na osnove 18F [Handling of aqueous radioactive waste in the production of radiopharmaceuticals based on 18F]. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya C, Fundamental'nye nauki [Herald of Polotsk State University. Series С. Fundamental sciences], (4), 128–134.

Tylets, P. V., Tugai, O. V., Krot, V. O., Ivanyukovich, A. A., Soroka, S. A., Brinkevich, D. I., … Chizh, G. V. (2018). Dolgozhivushchie radionuklidy pri proizvodstve [18F]ftorkholina dlya PET-diagnostiki [Long-lived radionuclides in the production of [18F]fluorocholine for PET-diagnosis]. Izvestiya Natsional'noi akademii nauk Belarusi. Seriya khimicheskikh nauk [Proceedings of the National Academy of Sciences of Belarus, Chemical Series], 54(3), 359–368. DOI: 10.29235/1561-8331-2018-54-3-359-368.

Marshall, C., Talboys, M. A., Bukhari, S., & Evans, W. D. (2014). Quantification of the activity of tritium produced during the routine synthesis of 18F fluorodeoxyglucose for positron emission tomography. J. Radiological Protection, 34(2), 435–444. DOI: 10.1088/0952-4746/34/2/435.

Mochizuki, S., Ogata, Y., Natano, K., Abe, J., Ito, K., Ito, Y., … Ishigure, N. (2006). Measurement of the induced radionuclides in production of radiopharmaceuticals for positron emission tomography (PET). J. Nuclear Science and Technology, 43(4), 348–353.

Kohler, M., Degering, D., Zessin, J., Fuchtner, F., & Konheiser, J. (2013). Radionuclide impurities in [18F]F- and [18F]FDG for positron emission tomography. Applied Radiation and Isotopes, (81), 268–271. DOI: 10.1016/j.apradiso.2013.03.044.

Wilson, J. S., Avila-Rodriquez, M. A., Johnson, R. R., Zyuzin, A., & McQuarrie, S. A. (2008). Niobium sputtered Havar foil for the high-power production of reactive [18F]fluoride by proton irradiation of [18O]H2O targets. Applied Radiation and Isotopes, (66), 565–570.

Marengo, M., Lodi, F., Magi, S., Cicoria, G., Pancaldi, D., & Boschi, S. (2008). Assessment of radionuclidic impurities in 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) routine production. Applied Radiation and Isotopes, 66(3), 295–302.

Ferguson, D., Orr, P., Gillanders, J., Corrigan, G., & Marshall, C. (2011). Measurement of long lived radioactive impurities retained in the disposable cassettes on the Tracerlab MX system during the production of [18F]FDG. Applied Radiation and Isotopes, 69(10), 1479–1485. DOI: 10.1016/j.apradiso.2011.05.028.

O’Donnell, R. C., Leon Vintro, I., Duffy, C. J., & Mitchell, P. I. (2004). Measurement of the residual radioactivity induced in the front foil of a target assembly in a modern medical cyclotron. Applied Radiation and Isotopes, 60(2–4), 539–542.

Dziel, T., Tyminski, Z., Sobczyk, K., Walecka-Mazur, A., & Kozanecki, P. (2016). Radionuclidic purity tests in 18F radiopharmaceuticals production process. Applied Radiation and Isotopes, 109(2), 242–246.

Ito, S., Sakane, H., Deji, S., Saze, T., & Nishizawa, K. (2006). Radioactive byproducts in [18O]H2O used to produce 18F for [18F]FDG synthesis. Applied Radiation and Isotopes, 64(3), 298–305.

Vabishchevich, S. A., Vabishchevich, N. V., Brinkevich, D. I., Brinkevich, S. D., & Nevzorov, D. I. (2019). Plenki piroliticheskogo grafita, obluchennogo ionami vodoroda N- [Films of pyrolytic graphite irradiated with hydrogen ions H-]. Vzaimodeistvie izluchenii s tverdym telom. [Interaction of radiation with a solid body] (43–45). Minsk: Publ. BSU. (In Russ., abstr. in Engl.).

Guarino, P., Rizzo, S., Tomarchio, E., & Greco, D. (2007). Gamma-ray spectrometric characterization of waste activated target components in a PET cyclotron. Cyclotrons and Their Applications–2007 (295–297). Giardini Naxos, Italy.

Palmieri, V., Azzolini, O., Bempozad, E., De Felicis, D., Johnson, R.R., Renzelli, M., & Scliarova, H. (2019). Influence of the microstructure on the diffusion barrier performance of Nb-based coatings for cyclotron targets. J. Vacuum Science & Technology, 37(5). DOI: 10.1116/1.5098168.

Chávez, J. C., Vargas, M. J., & Sánchez R. (2016). Measurement of activation products generated in the [18F]FDG production by a 9.6 MeV cyclotron. Radiation Physics and Chemistry, (126), 32–36. – DOI: 10.1016/j.radphyschem.2016.05.006.

Metzger, R. L., Lasche, G. P., Eckerman, K. F., & Leggett R. W. (2018). Long-lived contaminants in cyclotron-produced radiopharmaceuticals: measurement and dosimetry. J. Radioanalytical and Nuclear Chemistry, (318), 7–10. DOI: 10.1007/s10967-018-5970-6.

Makarov, S. P., Pik-Pichak, G. A., Rodionov, Yu. F., Khmyzov, V. V., & Yashin, Yu. A. (1991). Sechenie reaktsii 54Fe(n,α)51Cr na teplovykh neitronakh [Cross section of the reaction 54Fe(n,α)51Cr on thermal neutrons]. Atomnaya energiya [Atomic Energy], 70(3), 194–106. (In Russ., abstr. in Engl.).

Brinkevich, D. I., Brinkevich, S. D., Baranovskii, O. A., Chizh, G. V., & Ivanyukovich, A. A. (2018). Dolgozhivushchie radionuklidy v proizvodstve 2-[18F]ftordezoksiglyukozy [Long-lived radionuclides in the production of 2-[18F]fluorodeoxyglucose.]. Meditsinskaya fizika [Medical physics], 1(77), 80–88.

Alloni, D., Prata, M., & Smilgys B. (2019). Experimental and Monte Carlo characterization of radionuclidic impurities originated from proton irradiation of [18O]H2O in a modern medical cyclotron. Applied Radiation and Isotopes, (146), 84–89. DOI: 10.1016/j.apradiso.2019.01.026.

Didyk, A. Yu., Latyshev, S. V., Semina, V. K. Stepanov, A.E., Suvorov, A. L., Fedotov, A. S., & Cheblukov, Yu. N. (2000). Issledovanie vozdeistviya ionov kriptona s energiei 305 MeV na vysokoorientirovannyi piroliticheskii grafit [Investigation of the effect of krypton ions with an energy of 305 MeV on highly oriented pyrolytic graphite.]. Pis'ma v Zhurnal tekhnicheskoi fiziki [Technical Physics Letters], 26(17), 1–5. (In Russ., abstr. in Engl.).

Aygun, M., Cesur, A., Dogru, M., Boztosun, I., Dapo, H., Kanarya, M., … Karatepe, S. (2016). Using a clinical linac to determine the energy levels of 92mNb via the photonuclear reaction. Applied Radiation and Isotopes, 115(1), 97–99.

Gillis, J. M., Najim, N., & Zweit, J. (2006). Analysis of metal radioisotope impurities generated in [18O]H2O during the cyclotron production of fluorine-18. Applied Radiation and Isotopes, 64(3), 431–434.

Ivanyukovich, A. A., Soroka, S. A., Krot, V. O., Brinkevich, D. I., Brinkevich, S. D., Chizh, G. V., & Sverdlov, R. L. (2018). Ochistka [18F]ftorida ot dolgozhivushchikh radionuklidov pri proizvodstve [18F]ftordezoksiglyukozy [Purificationof [18F]fluoride from long-lived radionuclides in the production of [18F]fluorodeoxyglucose]. Meditsinskaya fizika [Medical Physics], 4(80), 59–65. (In Russ., abstr. in Engl.).

Ivanov, S. N., Porollo, S. I., & Dvoryashin, A. M. (2006). Vliyanie vysokodoznogo neitronnogo oblucheniya na sklonnost' k mezhkristallitnoi korrozii austenitnoi nerzhaveyushchei stali 12Х18Н9Т. Voprosy atomnoi nauki i tekhniki. Ser. Materialovedenie i novye materialy, (2), 222–228. (In Russ.).