ANALYSIS AND SEMANTIC INTERPRETATION METHODS OF DECISION-MAKING PROCESS IN NEURAL NETWORK SUPERVISED LEARNING CLASSIFICATION MODELS

Main Article Content

A. KURACHKIN
V. SADAU

Abstract

The paper focuses on the problem of interpreting the behavior of a feedforward neural network classifier model after learning, and proposes solutions to analyze and describe model output based on local linear approximations.

Article Details

How to Cite
KURACHKIN, A., & SADAU, V. (2019). ANALYSIS AND SEMANTIC INTERPRETATION METHODS OF DECISION-MAKING PROCESS IN NEURAL NETWORK SUPERVISED LEARNING CLASSIFICATION MODELS. Vestnik of Polotsk State University. Part C. Fundamental Sciences, (12), 57-61. Retrieved from https://journals.psu.by/fundamental/article/view/430
Author Biography

V. SADAU, Belarusian State University, Minsk

канд. техн. наук, доц.

References

Goodfellow, I. Deep learning / I. Goodfellow, B. Yoshua, C. Aaron. – Cambridge : The MIT Press, 2016. – 775 p.

Курочкин, А.В. Оптимизация процесса принятия решений в медицинских экспертных системах на базе нечеткой логики с использованием исторических данных / А.В. Курочкин, В.С. Садов, О.М. Демиденко // Проблемы физики, математики и техники. – 2019. – № 1 (38). – с. 78–84.

Ioannou, Y. Decision Forests, Convolutional Networks and the Models in-Between / Y. Ioannou, D. Robertson, D. Zikic, [et al.] // arXiv:1603.01250[cs] [Электронный ресурс]. – 2016. – Режим доступа: https://arxiv.org/abs/1603.01250. – Дата доступа: 08.10.2019.

Lundberg, S.M. A Unified Approach to Interpreting Model Predictions / S.M. Lundberg, S.-I. Lee // Advances in Neural Information Processing Systems. – 2017. – № 30. – P. 4765–4774.

Knowledge Acquisition for Expert Systems : A Practical Handbook / ed. by A.L. Kidd. – Springer Science & Business Media, 2012. – 208 p.