A MODEL FOR PREDICTING THE SUCCESSFUL RESOLUTION OF SITUATIONS OF UNCERTAINTY IN OPERATIONAL-SEARCH ACTIVITIES

Main Article Content

P. BOROVIK
S. PILYUSHIN

Abstract

The article discusses the theoretical and applied aspects of assessing the likelihood of resolving situations of uncertainty in operational investigative activities. The analysis of existing quantitative methods for assessing such situations is carried out. A probabilistic and statistical approach adapted to the conditions of the operational units of the internal affairs bodies is proposed, which makes it possible to formalize the decision-making process based on the calculation of probabilities and taking into account risk factors. The probability estimation model is substantiated, and an example of using the developed methodology for calculating the likely outcome is shown, taking into account the influence of all significant factors. The conceptual structure of key factors (choice, experience, time, risk) that determine the nature of the uncertainty situation in operational-search activity and form an interdependent system capable of adapting to changing operational conditions is presented.

Article Details

How to Cite
BOROVIK, P., & PILYUSHIN, S. (2025). A MODEL FOR PREDICTING THE SUCCESSFUL RESOLUTION OF SITUATIONS OF UNCERTAINTY IN OPERATIONAL-SEARCH ACTIVITIES. Vestnik of Polotsk State University. Part D. Economic and Legal Sciences, (2), 85-90. https://doi.org/10.52928/2070-1632-2025-71-2-85-90
Author Biographies

P. BOROVIK, Academy of the Ministry of Internal Affairs of the Republic of Belarus, Minsk

канд. юрид. наук, доц.

S. PILYUSHIN, Academy of the Ministry of Internal Affairs of the Republic of Belarus, Minsk

канд. юрид. наук

References

Shannon C. E. A Mathematical Theory of Communication // Bell System Technical Journal. – 1948– № 27. – P. 379–423.

Чуманов Ю.В. Принятие решения сотрудниками уголовного розыска в ситуациях неопределенности ориентиров поиска // Психопедагогика в правоохранительных органах. – 2018. – № 3(74). – С. 17–22.

Курлов А.Б., Петров В.К. Методология информационной аналитики. – М.: Проспект, 2023. – 384 с.

Арутюнова Д.В. Инновационный менеджмент: учеб. пособие. – Ростов-н/Д.: Изд-во ЮФУ, 2014. – 152 с.

Калмыков С.А., Шокин Ю.И., Юлдашев З.Х. Методы интервального анализа. – Новосибирск: «Наука», 1986. – 223 c.

Гнеденко Б.В. Курс теории вероятностей: учеб. – 6-е изд. – М.: Наука, 2017. – 448 с.

Новикова Н.М. Байесовский механизм принятия решения человеком-оператором // Вестник ВГУ: Системный анализ и информационные технологии. – 2006. – № 2. – С. 119–124.

Кулинская Е.Л., Мамлеева Р.Р., Уразаева Л.Ю. Метод сценариев в оценке инвестиционных проектов [Электронный ресурс] // E-Scio. – 2019. – № 12(39). – URL: https://cyberleninka.ru/article/n/metod-stsenariev-v-otsenke-investitsionnyh-proektov-1 (дата обращения: 28.01.2025).

Dalkey N., Helmer O. An Experimental Application of the Delphi Method to the Use of Experts // Management Science. – 1963. – Vol. 9. – № 3. – P. 458–467.

Saaty T. L. The Analytic Hierarchy Process. – New York: McGraw-Hill, 1980. – 287 p.

Freedman R. Expert Weighting Approach for Risk Assessment in Criminological Investigations // Journal of Police Studies. – 2018. – Vol. 2. – P. 34–47.

Uncertain judgements: Eliciting experts’ probabilities. Hoboken / E. C. Merkle [et al.]. – NJ: Wiley. XIII, 2006. – 321 p.

Granger Morgan M., Henrion M. Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis. – Cambridge: Cambridge University Press, 1990. – 332 p.